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Abstract

Antigen- and adjuvant-based bioconjugates that can stimulate the immune system play an 

important role in vaccine applications. Bioconjugates have demonstrated unique physicochemical 

and biological properties, enabling vaccines to be delivered to key immune cells, to target specific 

intracellular pathways, or to mimic immunogenic properties of natural pathogens. In this review 

we highlight recent advances in such molecular immunomodulators, with an emphasis on the 

structure-function relationships that provide the foundation for rational design of safe and 

effective vaccines and immunotherapies.

1. Introduction

Vaccines remain the single most effective public health intervention ever developed, with 

millions of lives saved every year through the array of pediatric and adult vaccines 

administered globally.1-3 The immune response elicited by vaccination is a multi-step, 

complex process that involves the coordinated action of diverse molecular signals and 

immune cells within lymphoid organs4,5: first, antigen must be acquired by specialized 
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sentinel cells known as antigen presenting cells (APCs). APCs can internalize antigen 

directly in the tissue of the vaccination site or antigen can be transported through the 

capillary lymphatic vessels to APCs or B-cells in the draining lymph nodes6 (Fig. 1). 

Second, for T-cell activation, these APCs must degrade the antigen in appropriate 

intracellular compartments and load resulting peptide fragments onto major 

histocompatibility complex (MHC) molecules.4,5 These APCs must also be activated by 

inflammatory cues (“danger signals”) elicited by the vaccine, which instruct the APCs to 

mount an immune response against the acquired antigen.7 Third, in the lymph node, CD8+ 

T-cells and CD4+ T-cells with matching receptors recognize peptide fragments from the 

antigen bound to MHC on APC surfaces, and if the APCs are properly activated, these T-

cells proliferate and differentiate into primed effector cells that can directly kill infected 

cells (CD8+ “killer” T-cells) or secrete cytokines to coordinate microbe clearance by other 

immune cells (CD4+ “helper” T-cells). In parallel, antigen is also recognized by antigen-

specific B-cells, which receive “help” signals from primed CD4+ T-cells to differentiate into 

antibody-producing plasma cells that secrete copious amounts of antibody that will bind to 

microbes and promote their clearance. For therapeutic vaccines administered in the presence 

of ongoing disease, these effector T- and B-cell responses can provide immediate 

therapeutic benefit. Following initial expansion, most (~90%) of the antigen-specific CD8+ 

T-cells, CD4+ T-cells, and B-cells generated during this early effector phase die off, but a 

population of long-lived memory T-cells and B-cells develops. This pool of long-lived cells, 

which can persist for many years in humans, is the basis of prophylactic vaccination; these 

memory cells provide in some cases lifelong immunity against subsequent exposure to the 

pathogen matching the vaccine antigen.4

The first licensed vaccines were comprised of inactivated or attenuated live microorganisms. 

Though these whole-microbe vaccines have been successful in preventing many infectious 

diseases, this approach is not applicable to some vaccine settings (e.g., therapeutic vaccines 

for cancer) or may not be safe (e.g., vaccines for HIV). Further, most live-attenuated 

vaccines were developed empirically without a clear understanding of their mechanisms of 

action.8 In the modern era, the paramount importance of vaccine safety has made such an 

approach problematic, and much of current vaccinology is based on the development of 

subunit vaccines, which replace whole microbes with defined protein or polysaccharide 

antigens that have no potential for infectivity or toxicity on their own.9,10 Subunit vaccines 

are usually fully synthetic and have molecularly defined structures, which have advantages 

in manufacturability, stability, and safety. However, subunit vaccines are poorly 

immunogenic and require adjuvants to induce an adaptive immune response. Adjuvants 

broadly defined are any substance added to a vaccine to augment the immune response to 

the antigen, and include diverse compounds including microbe-derived products that trigger 

conserved pathogen-recognition receptors; synthetic immunostimulatory molecules; and 

nanoparticles, microparticles, or oil/water emulsions.11,12

Among these different approaches, one of the most attractive strategies to achieve well-

defined molecular vaccines is to incorporate additional functionality directly into the antigen 

(or alternatively, into danger signal molecules) through bioconjugation.13-16 In fact, 

bioconjugates have long had an important role in the development of vaccines against 

infection, cancer and many other diseases. The most common bioconjugates are those where 
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vaccine components are covalently linked to a protein, peptide, lipid, oligonucleotide, 

polymer, or nanoparticle, but in some cases antigens or molecular adjuvants are linked to 

synthetic small molecules.17-19 Depending on their chemical and molecular nature, 

bioconjugates can enhance vaccine efficacy via diverse mechanisms. Examples include 

conjugation of antigen/adjuvant to a ligand to enable tissue/cell specific targeting; 

conjugation of vaccines to polymers to provide new properties such as multivalency and/or 

controlled release; vaccines conjugated to nanoparticles can also lead to changes in the 

pathways by which antigens are processed by APCs. Thus, bioconjugates can be tailored and 

functionalized according to vaccine-specific needs.

In this review, we summarize bioconjugate strategies being explored in preclinical research 

and clinical development, with a focus on the guiding principles for rational design of 

bioconjugates in vaccine applications. We have chosen to limit the scope to techniques and 

approaches that can modulate the immune system via molecular conjugates; therefore, a 

variety of important and novel systems, such as antigen/adjuvant encapsulated in nano/micro 

particles that have been reviewed recently20,23 are not covered here. In addition, we will not 

discuss polysaccharide/peptide/hapten conjugate vaccines (antigen conjugated to carrier 

proteins), which have also been recently reviewed.15, 24-26

2. Targeting vaccines to the lymphatic system

For a vaccine to prime de novo immune responses, naive T-cells and B-cells that reside in 

secondary lymphoid organs (lymph nodes and spleen) must be stimulated. Because of this 

localization, Zinkernagel first enunciated the “geographical” concept of immunity, whereby 

vaccines that do not reach the lymphoid organs are ignored by the immune system.27 Two 

pathways for vaccine delivery to lymph nodes are possible: First, vaccine molecules can be 

directly transported from injection sites (muscle, skin, or mucosal surfaces) to draining 

lymph nodes (LNs) by lymph draining through lymphatic vessels (Fig. 1). Alternatively, 

APCs (monocytes from the blood, or local tissue-resident dendritic cells) can internalize 

vaccine antigens/adjuvant compounds at the injection site and actively carry them through 

migration to the LNs. The latter pathway is relatively inefficient because few APCs migrate 

to lymph nodes from a site of inflammation, but these migratory cells play an important role 

in the evolving immune response in some settings.28 Bioconjugate strategies have thus been 

explored that facilitate lymphatic uptake and capture of vaccines in the lymph nodes.

2.1. Targeting lymphoid tissues via macromolecular conjugates

The fate of molecules injected parenterally is strongly influenced by molecular size. 

Connective tissues are perfused by blood and lymphatic vessels, which play a major role in 

the clearance of proteins injected into the tissue. Fluid is both released and reabsorbed across 

blood vessels, while lymphatic vessels provide for one-way transport of fluid out of tissue. 

Blood vessels reabsorb ~10-fold more interstitial fluid from the tissue than lymphatics, but 

the endothelial cells of the blood vessels are connected by tight junctions which block the 

diffusion of particles greater than ~3-5 nm in size. Thus, small molecules/particles are 

cleared from tissues primarily by the blood, while proteins show increasing efficiencies of 

lymphatic uptake with increasing molecular weight (plateauing at masses greater than 

~40-50 KDa).29,30 For vaccines, this size-dependent transport means that peptides, small 
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protein antigens, and a variety of molecular adjuvants will exhibit very poor lymph node 

accumulation if injected as unformulated compounds. Thus, a number of approaches have 

been developed to direct small molecular weight vaccine components to lymph nodes by 

increasing their effective hydrodynamic size.

Antigens and molecular adjuvants conjugated to size-optimized nanoparticles (NPs) have 

frequently been used to promote LN targeting. Reddy et al. showed that small polypropylene 

sulfide (PPS) NPs (less than 45 nm in diameter) were able to drain efficiently to lymph 

nodes for capture by LN-resident dendritic cells (DCs).31,32 Attaching subunit antigens or 

adjuvants to such particles enhanced both humoral and antigen-specific CD8+ T cell 

responses.32,33 Similar enhancements in immunogenicity were observed by Fifis et al. using 

peptide antigens conjugated to 40 nm diam. polystyrene nanoparticles.34,35 Using 

monodisperse polystyrene nanoparticles, Manolova et al. also demonstrated size-dependent 

trafficking of NPs to the draining LNs: large particles (200-500 nm) were mainly associated 

with DCs at the injection sites, but small particles (20-200 nm) were able to freely drain to 

the lymph node and accumulate in LN-resident DCs and macrophages, suggesting an 

optimum range for lymphatic uptake of injected nanoparticles.36 In each of these studies, 

subsequent conjugation of antigen or adjuvant to lymph node-targeting NPs led to markedly 

enhanced humoral and cell-mediated immune responses, demonstrating the potential of 

nano-sized materials in vaccination.

Conjugation to water-soluble polymers can also increase the hydrodynamic radius of 

compounds to promote lymphatic delivery. Because efficient lymph node accumulation is 

also needed for sentinel lymph node mapping in cancer (a procedure where optical or 

radioactive tracers with lymph node tropism are injected at a tumor site to identify tumor-

draining lymph nodes),37 a number of examples of lymph node-targeting conjugates 

applicable to vaccines have been demonstrated in the context of delivering imaging agents to 

lymph nodes. For example, Forrest and colleagues investigated LN retention of a series of 

six different molecular weight hyaluronan (HA)-near-infrared dye (HA-IR820) conjugates in 

mice over 2 weeks following subcutaneous injection.38 They discovered that 74 KDa HA-

IR820 had the largest net lymph node uptake. Enhanced lymphatic uptake and nodal 

retention of HA conjugates suggest this natural biodegradable polymer could be an 

interesting vaccine carrier, particularly given the fact that one of its receptors, CD44, is 

expressed by APCs. Recently, the use of polymer conjugates to enhance LN uptake by 

vaccines was shown for water-soluble N-trimethylaminoethylmethacrylate chitosan (TMC)-

protein antigen conjugates. TMC-antigen conjugates were shown to exhibit dramatic 

increases in lymph node uptake relative to soluble antigen after nasal instillation.39 The 

macromolecular conjugate also elicited 80-fold higher serum IgG responses compared to 

mixtures of the same polymer with antigen. These results suggest bioconjugates are also 

capable of targeting LN via mucosal routes of administration, when coupled to polymers 

such as chitosan that promote penetration through the epithelial barriers at these sites.39

Apart from size, surface properties (i.e. surface charge, hydrophobicity) can affect the 

delivery of macromolecules to the lymph node. It is widely believed that positively charged 

surface leads to strong electrostatic interaction with the negatively charged interstitial 

matrix, preventing lymphatic drainage. Thus, neutral or negatively charged molecules are 
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preferred in lymph node targeting. Takakura et al. demonstrated that neutral or anionic 

polymers were more efficiently accumulated in the draining lymph nodes compared to 

cationic polymers.40 In another study, Kaminskas et al. reported the influence of surface 

PEGylation of a polylysine dendrimer in the absorption and lymphatic targeting following 

SC administration in a rat model and found that increasing the PEG chain length (thereby 

shielding the surface charge) promoted uptake in the lymphatics.41 The Hydrophobicity of 

macromolecular carrier can impact the lymphatic uptake. Maintaining a balance between 

surface hydrophilicity and hydrophobicity has been shown to govern the drainage from 

injection sites and lymph nodes retention.42 Enhancing hydrophobicity leads to increased 

molecular interaction with antigen presenting cells, thus increasing lymph node retention. 

However, hydrophobic modification also limits the solubility and leads to aggregation at the 

injection sites, reducing the drainage to the lymphatics. Thus, balancing the hydrophobicity/

hydrophilicity is critical in designing molecular conjugates to target lymph nodes. 

Dendrimers are perhaps the most intensively investigated macromolecule for lymph node 

targeting purposes.43 These compact polymeric structures are in an optimal size range to 

avoid entry into blood vessels from tissue but still diffuse efficiently through the 

extracellular matrix. They are transported to the lymphatics and trapped in the lymph node, 

especially when their surface charge and hydrophobicity is appropriately modified. 

Kobayashi and colleagues investigated the use of gadolinium-conjugated poly(amido amine) 

(PAMAM) dendrimers as magnetic resonance lymphangiography agents.44 Increasing 

hydrophobicity of the dendrimer led to enhanced lymphatic uptake. The same group also 

conjugated 5-color near-infrared dyes and radionuclides to a generation-6 PAMAM 

dendrimer and successfully applied these polymers in multi-modal and multicolor lymphatic 

imaging.45 Together, materials that can efficiently target lymph node need to possess a small 

size (5-100 nm), negative or neutral surface charge, and appropriate hydrophobicity.

A second size-based strategy for lymph node targeting is to design conjugates that non-

covalently associate with serum proteins that have intrinsically efficient lymphatic uptake. 

The best-established example of this approach is ‘hitchhiking’ of dye compounds on 

endogenous albumin following parenteral injection for sentinel lymph node mapping: A 

variety of small-molecule dyes such as Evans blue were discovered empirically to stain 

draining lymph nodes when injected subcutaneously in tissues or in tumor resection sites, 

allowing visual identification of lymph nodes during tumor resection surgery.46 Subsequent 

structure-function analyses of effective dyes revealed a common characteristic of effective 

lymph node mapping dyes: high-affinity binding to albumin.47 Thus, upon injection, these 

compounds associate with endogenous albumin in the interstitial fluid, forming a complex of 

appropriate size to efficiently traffic to lymphatics. Inspired by this clinically-proven 

approach for lymph node targeting, we recently developed ‘albumin hitchhiking’ vaccines, 

where antigens or molecular adjuvants are covalently linked to a lipophilic albumin binding 

domain (Fig. 2a).48 These amphiphile-vaccines, if appropriately designed to reduce 

spontaneous cell membrane insertion while retaining effective association with albumin, 

exhibited >10-fold increased accumulation in lymph nodes following subcutaneous 

administration in mice (Fig. 2b-c). Our collective data to date suggests initial lymphatic 

uptake and lymph node targeting is largely a size-based effect, whereby albumin, which is 

large enough to show predominantly blood-to-lymph one-way trafficking out of tissues, 
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ferries the vaccine to lymph nodes. (Notably however, once in the lymph node, albumin 

binding may lead to significantly altered trafficking, uptake, and antigen processing 

compared to free vaccine). This greatly increased lymph node delivery in turn led to greatly 

enhanced potency of these vaccines for promoting T-cell responses (Fig. 2d) and anti-tumor 

immunity. In addition, this approach greatly increased the safety profile of molecular 

adjuvants by effectively confining them to draining lymph nodes, reducing systemic 

dissemination. Given the fact that lymph, which originates from interstitial fluid and 

circulates throughout the lymphatic system, contains many substances, including plasma 

proteins (i.e.—albumins, globulins, and fibrinogen), lipoproteins, complement components, 

etc., it remains to be investigated whether other lymph components can be similarly 

exploited for ‘hitchhiking’ of vaccines to lymph nodes.

2.2 Targeting immune cell receptors

In addition to the “passive targeting” strategies described above, which rely on the physical 

properties of vaccine carriers to promote lymphatic uptake, “active targeting” based on 

conjugation of vaccines with a specific ligand for APC surface receptors (e.g. Fc receptors, 

CD40, C-type lectin receptors such as DC-SIGN, DEC-205, mannose receptor, etc.) can also 

be used to augment lymph node retention.49-51 One of the first and most striking examples 

of the capacity of ligand-mediated targeting to promote vaccine responses was shown with 

protein antigens conjugated to an anti-DEC-205 antibody: anti-DEC-205-ovalbumin 

conjugates injected in mice were taken up by CD11c+ DCs primarily in the lymph nodes 

draining the injection site, leading to 400-fold greater CD8+ T-cell responses compared to 

non-targeted ovalbumin protein.51 Recently, human anti-DEC-205 antibody fused with NY-

ESO-1, a full-length cancer-testis antigen overexpressed in diverse cancer types, was shown 

to induce humoral and cellular immunity in patients with confirmed NY-ESO-1-expressing 

tumors.52 Other members of the C-type lectin receptors, including DC-SIGN (CD209) and 

the mannose receptor (CD206), recognize carbohydrates (mannose, fucose, glucose, 

maltose, etc.) that are characteristic of pathogen surfaces, regulating the uptake of pathogens 

and subsequent activation of adaptive immune responses. The high specificity of 

carbohydrate-lectin interactions has been exploited for targeting a wide variety of antigen/

adjuvant formulations for vaccine applications. For example, mannosylated MUC1, a tumor-

associated mucin-like protein has been shown to induce strong Th1 or Th2 immune 

responses, depending on the oxidative state of the mannose.53,54 Clinical studies with 

oxidized mannan (a polymeric form of mannose)–MUC-1 conjugates demonstrated 

induction of both humoral and cellular responses and evidence of protection against 

recurrence in early stage breast cancer patients.55 Importantly, no adverse events were 

observed, suggesting these polymer conjugates were safe in humans. Synthetic artificial 

ligands, such as nucleic acid aptamers identified by in vitro selection, have also been shown 

to specifically bind DEC-205 on DCs.56 Due to their unique chemical properties and low 

immunogenicity, aptamers are promising alternatives to antibody-based targeting agents. 

The DEC-205-targeted antigen was efficiently cross-presented and subsequently activated 

CD8+ T cells.56 Clearly, active targeting to DCs enhances vaccine efficacy and safety and 

might be included in the future as a safe immunotherapy regimen.
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These two concepts of hydrodynamic size and receptor-specific targeting can also be 

combined for enhanced LN targeting: Lymphoseek, a mannose-conjugated, dextran-based 

lymphatic mapping polymeric agent has been recently approved by the FDA to assist in the 

localization of lymph nodes draining a primary tumor site in patients with breast cancer or 

melanoma.57 Lymphoseek has an appropriate size (7 nm) and carries multiple units of 

mannose, which targets mannose receptors expressed on the surface of macrophages and 

DCs.

3. Promoting antigen processing and presentation

Antigen presentation by APCs, whereby short peptide fragments of antigens are loaded into 

MHC molecules and displayed on the APC surface to activate T-cells, plays a key role in the 

induction of adaptive immune responses. Many of the targeting ligands discussed above for 

promoting lymph node accumulation that can bind to APC surface receptors promote 

antigen internalization or modulate antigen processing.49-51,53-55,58,59 However, 

bioconjugate vaccines can be further designed to control antigen presentation by influencing 

what intracellular compartments antigens are delivered to within APCs or directly changing 

how antigens are proteolyzed and loaded onto MHC molecules.

3.1. Bioconjugate vaccines promoting cross presentation

Much effort has focused on promoting MHC-I presentation of antigens, in order to prime 

CD8+ T-cell responses with vaccines. Class I MHC molecules are normally primarily loaded 

with peptides generated in the cytosol, and thus antigens taken up from the extracellular 

environment (and therefore transported into endosomes within APCs) are typically not 

delivered to the MHC I antigen loading pathway. The process of extracellular antigens being 

taken up by APCs and loaded on class I MHC is called cross presentation, a process that 

may be critical for successful subunit vaccines against cancer and some infectious 

diseases.60 One strategy to enhance class I MHC loading is to link antigens to endosome-

disrupting moieties that can deliver the macromolecules to the cytosol. For example, Stayton 

and colleagues prepared pH-responsive, endosomolytic polymers to actively promote 

antigen cross-presentation, based on amphiphilic diblock copolymers conjugated with 

protein antigens through disulfide linkages (Fig. 3).61-63 In this elegant design, protonation 

of the carboxylate and amine groups of these copolymers within endolysosomes leads to 

their interaction with the endosomal membrane and/or a proton sponge effect, leading to 

escape of the conjugates into the cytosol, where the disulfides are reduced to release the 

antigen for “natural” class I MHC pathway processing.61 These copolymers yielded 

markedly enhanced cellular responses in vivo.61-63 The vaccine's efficacy was further 

improved when CpG DNA (a molecular adjuvant that stimulates APCs) was included.61 

Another strategy explored for cytosolic delivery of antigens is through conjugation to cell-

penetrating peptides (CPPs). Certain CPPs are endosomolytic and conjugation of short 

(~10-20 amino acid) CPP sequences to antigens has been shown to promote antigen uptake, 

cytosolic localization, and antigen cross-presentation for potent cytotoxic CD8+ T cell 

responses in vivo.64-66 Finally, activation of certain pattern-recognition receptors (reviewed 

in the following section) enables efficient antigen cross-presentation via diverse 

mechanisms, leading to potent CD8+ T cell stimulation.67 In summary, bioconjugates can be 
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designed to dramatically enhance antigen uptake and presentation, resulting in much lower 

antigen doses required for immune cell activation and robust and T-cell proliferation.

3.2. Promoting tolerogenic antigen presentation

In addition to stimulating an immune response, bioconjugates can be used to promote 

tolerogenic antigen presentation, in order to inhibit detrimental immune responses. This is a 

potentially ideal treatment strategy for autoimmune diseases, allergies, and organ 

transplants, providing antigen-specific immune tolerance without global 

immunosuppression. Early studies focused on the use of apoptotic cells for the induction of 

tolerance: Peptide self-antigens chemically conjugated to apoptotic cells were shown to be 

effective and safe for the prevention and treatment of a wide variety of autoimmune diseases 

including relapsing experimental autoimmune encephalomyelitis (EAE, a mouse model of 

multiple sclerosis),68 type 1 diabetes69 and transplant rejection.70 Although the underlying 

mechanisms are still under study, it is believed that several distinctive mechanisms, such as 

suppression of costimulatory molecule expression on APCs, modulation of antigen 

presentation, and production of immunosuppressive cytokines to promote T-cell clonal 

depletion or anergy may act synergistically in such therapies. Recently, nanoparticles 

conjugated with disease-associated peptide antigens were used to replace donor cells in this 

approach in an attempt to avoid the complexities and cost associated with cell manipulation 

in the clinic. A number of different nanoparticles have been covalently conjugated to 

autoantigens and have shown promise in several autoimmune disease models.71,72 For 

example, Getts and coworkers showed that intravenous infusion of antigen-decorated 

particles (500-nm diameter) induced long-term T-cell tolerance in mice with relapsing 

experimental autoimmune encephalomyelitis (EAE).72 Blockade of immune cell adhesion 

during antigen recognition has been shown to suppress the inflammatory immune response 

in autoimmune diseases. Chittasupho and colleagues used peptide-conjugated nanoparticles 

to block immunological synapse formation between dendritic cells and T-cells. These 

nanoparticles also altered cytokine production in cell culture when compared to 

unconjugated ligands.73 In a separate study, soluble antigen arrays (SAgAs, hyaluronic acid 

grafted with antigen and LABL peptide, an immune cell adhesion inhibitor) were shown to 

be efficacious in experimental autoimmune encephalomyelitis.74 Promoting tolerogenic 

antigen presentation has also been achieved by in situ binding of autoantigens to red blood 

cells. Kontos and coworkers reported an innovative strategy where an antigen was 

conjugated with an erythrocyte binding domain, with the goal of targeting autoantigens into 

the normal pathways of tolerance present during clearance of aging red blood cells.75 

Following i.v. injection, these RBC-binding constructs bound efficiently to erythrocytes in 

the blood, inducing peripheral tolerance in an antigen specific manner.75 Instead of using 

cells, this strategy uses molecularly-defined bioconjugates for in situ erythrocyte targeting, 

which like the nanoparticle/microparticle-conjugate approach, should be more readily 

translated to human studies.

4. Multivalent immunogens

Many pathogens such as viruses and bacteria exhibit a highly ordered, repetitive display of 

antigens on their surfaces, which are thought to effectively engage and cluster antigen 
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receptors on B cells, stimulating antibody production more strongly than the same antigens 

encountered as soluble proteins in solution.76-78 These observations have led to the idea that 

the immunogenicity of subunit antigens can be greatly enhanced by a rigid, ordered 

organization on surfaces, mimicking viral particles.76 This multivalency of antigen 

presentation, together with the facilitation of immune cell recognition and antigen 

internalization, has been explored as a strategy to enhance both humoral and cellular 

immunity.

4.1. Multivalent antigens

Early studies with haptens (small molecule antigens that elicit T-cell-independent B-cell 

responses) conjugated to water-soluble polymers suggested that T-independent antibody 

responses in vivo are only elicited when at least ~20 haptens are coupled to each polymer 

chain at a spacing of ~10 nm apart,79 providing early evidence for the importance of antigen 

multivalency and clustering in B-cell triggering. Building on the principle that multivalency 

can increase the immunogenicity of subunit antigens, it was shown that peptides 

multimerized on a dendritic oligo-lysine scaffold (termed multiple antigenic peptides, 

MAPs) elicited enhanced antibody responses.80 Mixing immunological adjuvants or 

incorporating T-helper epitopes into the MAP system have been reported to greatly enhance 

the efficacy of these vaccines.81 MAPs can be readily constructed using solid phase peptide 

synthesis and have been shown to be effective in a variety of vaccines.82,83 Dendrimers are a 

second platform widely used for multivalent antigen display. For example, Sheng et al. 

prepared polyamidoamine (PAMAM) dendrimers chemically conjugated to ovalbumin and 

found significant increases in both anti-OVA CD8+ T cells and OVA-specific IgG in mice 

compared to soluble OVA vaccines.84 Liu et al. reported a star polymer-peptide conjugate 

and found greatly enhanced cellular responses without the need for additional 

immunological adjuvants.85 These self-adjuvanting conjugates were able to eradicate TC-1 

tumors (a model of HPV-induced cervical cancer) in mice after a single immunization.85 

Multimeric antigens can be also built on synthetic peptides linked with a polymerizable 

double bond86,87 or derived from ring-opening metathesis polymerization (ROMP).88 For 

example, Brandt et al. demonstrated a linear polypeptide derived from acryloyl modified 

monomer had improved immunogenicity.87 Using a polymer-hapten conjugate system 

derived from ROMP, Kiessling et.al., demonstrated that B cell activation was strongly 

influenced by antigen valency; conjugates with high antigen valencies promoted stronger B 

cell receptor signaling in vitro and greater antibody production in vivo.88 These studies, 

provide evidence that antigen conjugates in a multivalent format can yield potent B- and T-

cell responses.

4.2. Self-assembled immunogens

As an alternative to direct conjugation/synthesis of pre-fabricated multivalent scaffolds, 

multivalent immunogen display can also be achieved using individual antigens that undergo 

programmed self-assembly. The licensed hepatitis B virus and human papilloma virus 

vaccines are based on natural self-assembling proteins from viral capsids, which self-

assemble to form nanoparticles 40-60 nm in diameter displaying an ordered array of HBV 

and HPV antigens, respectively.89 Recently, fully synthetic peptides have been explored as 

self-assembling vaccine nanomaterials. For example, synthetic lipopeptides, containing 
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peptide antigens linked to a lipid-like molecule, are capable of self-assembling into 

homogeneous nanoparticles90 (Fig. 4A) or cylindrical micelles91 (Fig. 4B) via hydrophobic 

interactions. In addition to lipid conjugation, antigen epitopes may also be covalently linked 

to peptide sequences that form ordered structures via molecular interactions including van 

der Waals forces, ionic bonds, hydrogen bonds and hydrophobic forces.92-95 Engineered 

peptide nanoparticles92 (Fig. 4C) or nanofibers93-95 (Fig. 4D) with repetitively displayed 

antigen epitopes have been assembled utilizing the peptide molecular interactions and have 

shown to be potent immunogens promoting both T-cell and antibody responses in vivo. A 

common characteristic of these virus-like synthetic assemblies is their potency without the 

need for addition of further adjuvants.91,94 This finding is even more striking given that 

responses to these nanostructures have been formally shown to be independent of common 

Toll like receptor-based innate immune recognition pathways.91,93 Yet these self-assembling 

antigens elicit T-cell dependent, long-lived class-switched antibody responses,96 implying 

that humoral immunity primed by these multivalent immunogens shares characteristics of 

both T-cell-independent and T-cell-dependent antigens.

Self-assembling nanostructures can be designed to incorporate additional functionality 

beyond antigen display alone. For example, coupling of antigens to particles through a 

disulfide linkage promotes environment-sensitive release of the antigen for antigen 

processing in the reductive endolysosomal pathway within APCs 97; this approach has been 

used to link protein antigen to block copolymer micelles for intracellular release of antigen, 

promoting cross presentation to T-cells.98 Moyle et al. developed an approach to couple 

protein antigens to nanoparticle-forming amphiphiles that self-assembled via hydrophobic 

lipid tails.99 The lipid tails of these multi-block amphiphiles were also designed to trigger 

Toll-like receptors on APCs (discussed further below) and the hydrophilic block contained a 

dendritic cell-targeting peptide, thus building antigen display, APC targeting, and APC 

activation all into a single molecule. These diverse examples illustrate the capacity of 

nanostructure-based vaccine platforms to display ordered arrays of antigen and regulate 

antigen uptake and processing, using self-assembly-based synthesis approaches that are 

attractive for well-defined large-scale manufacturing.

5. Activating antigen presenting cells

As noted in the introduction, subunit antigens are usually formulated with adjuvants to boost 

or modify the immune response, but only a handful of adjuvants have reached licensure as 

part of approved vaccines so far. One of the main ways by which adjuvants can act is to 

stimulate the activation of antigen presenting cells and other innate immune cells, which 

play critical roles in initiating the adaptive immune response (Figure 1). APC activation is 

driven by pathogen-sensing receptors that recognize conserved molecular motifs from 

microbes such as lipopolysaccharide, double-stranded RNA, and cyclic dinucleotides, and 

such “danger signal” molecules have been widely exploited as molecular adjuvants for 

vaccines.100 The simplest bioconjugation strategy to exploit danger signals in vaccine design 

is to conjugate these molecular adjuvants directly to antigens, enforcing co-exposure of 

immune cells to the antigen and danger signal together.101-106 However, more sophisticated 

chemical strategies to modulate the form and function of molecular adjuvants may lead to 

adjuvant compounds with entirely new properties and potencies.107
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The most studied class of danger signals are ligands for a highly conserved family of 

receptors known as the Toll-like receptors (TLRs), which are expressed by immune cells in 

organisms ranging from flies to humans.101 TLR agonists are being employed in a variety of 

novel ways by chemists to enhance prophylactic or therapeutic vaccines. For example, 

irradiated tumor cells have been pursued in numerous clinical trials as candidate cancer 

vaccines. Tom et al. synthesized succinimidyl ester-functionalized CpG DNA and 

lipoteichoic acid, ligands for TLR-9 and TLR-2/6, respectively, and conjugated these 

reactive ligands to cell surface proteins of tumor cells to provide danger signals that would 

be guaranteed to be co-delivered into APCs during vaccination.108 Multimerization of TLR 

agonists may also impact their function, by promoting receptor aggregation that alters 

intracellular signaling. Mancini et al. showed that heterodimers of TLR-2 and TLR-9 

agonists coupled via short poly(ethylene glycol) spacers endowed these danger signals with 

a potent capacity to activate NF-κB signaling in APCs, while soluble mixtures of the same 

ligands had almost no capacity to trigger this signaling network; this alteration of 

intracellular signaling led to enhanced production of T-cell-stimulatory cytokines from 

APCs.109 Covalently link small-molecule immune response modifiers (IRMs) to antigens is 

a popular strategy to improve vaccine potency and adjuvant safety.102,103 Recently, a 

rational approach which precisely control the pharmacology of IRMs was developed.110 

IRMs were modified with polyethylene glycol (PEG) linker and terminal phophonate 

groups. While PEG linker improves solubility at neutral pH, the phophonate group 

facilitates the adsorption to Al(OH)3, restricting the systemic exposure. This conjugate 

design leaded to increased in vivo potency with little or no systemic toxicity.110

Supramolecular approaches may open new opportunities for adjuvant design. For example, 

synthetic peptides of the general sequence CSKKK containing one or more palmitoyl groups 

appended to the cysteine thiol or N-terminus are agonists of TLR-2. These amphiphiles have 

recently been shown to self-assemble as spherical or cylindrical micelles in solution 

depending on the number of lipid tails;111 if stable in physiologic conditions, these different 

structures could have significant implications for crosslinking of the receptors. A 

structurally optimized TLR-2 specific monoacyl lipopeptide was also developed recently 

with excellent adjuvant activity, safety and also water solubility.112 Type A CpG single-

stranded oligonucleotides (ligands for TLR-9) with palindromic nucleotide sequences are 

known to potently induce the production of type I interferons (IFNs), key cytokines 

promoting cellular and humoral immunity. However, the large-scale homogeneous 

production of these oligos, which undergo uncontrolled base pairing-mediated aggregation 

and self-assembly, is problematic. Gungor et al. recently demonstrated that non-palindromic 

CpG oligos could be induced to self-assemble by condensation with cationic peptides 

(derived from the Tat protein of HIV), forming well-defined “nanorings” that induced strong 

IFN induction in dendritic cells, mimicking palindromic CpGs with a well-defined 

nanomaterial.113 The development of nucleic acid-based adjuvants is an area where the 

burgeoning field of DNA nanotechnology is ripe to have impact, given the capacity of self-

assembled DNA to form arbitrary, complex nanoscale structures. Early examples of CpG 

delivered by nanosized DNA assemblies suggest that uptake and stimulation of TLR-9 can 

be fine-tuned by DNA nanostructures.114-116
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6. Conclusions and future outlook

The rational design of next-generation prophylactic and therapeutic vaccines will benefit 

substantially from breakthrough advances in multidisciplinary fields including basic 

immunology, engineering, chemistry and materials science. By linking two or more 

molecules to form a complex having diverse functions absent in the individual components, 

bioconjugate strategies provide exciting new ways to modulate the induction of immunity or 

tolerance, bridging immunological features with a detailed understanding of synthetic 

molecular functions. While this review outlines the bioconjugate approaches currently being 

used to optimize vaccine efficacy, it underscores the promise of bioconjugates in the 

development of future innovative vaccines. Undoubtedly as we gain more knowledge of the 

human immune system, additional bioconjugate strategies not covered in this review will 

emerge as new modalities for immune modulation. For example, bioconjugates might be 

developed for immune checkpoint blockade to augment vaccine immunity. Bioconjugates 

might also be engineered to program immune cellular differentiation and thus control 

immune cell fates; or be used to mimic the antigen exposure kinetics of pathogens. In 

addition, new types of bioconjugates fulfilling the above design criteria are also emerging as 

novel vaccines or delivery systems. Therefore, future strategies to design bioconjugates that 

can produce tailored immune responses against a specific disease will require an extension 

of our current understanding of how to modulate the immune system. In the long term, 

bioconjugates will continue to play key roles in rational design for improvement of our 

current vaccines and for development of new vaccines against challenging pathogens and 

diseases.
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Figure 1. Mechanisms by which bioconjugates enhance the activation of immune system through 
vaccination
Activation of the immune response begins when vaccines are introduced to the body. 

Bioconjugates have been engineered to target vaccines to antigen-presenting cells (APCs) in 

the lymph node (1); to enhance the antigen uptake and presentation (2); and to activate 

APCs (3).
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Figure 2. Targeting lymph nodes with ‘albumin-hitchhiking’ vaccines
a) Schematic of the design of albumin-binding amphiphiles. Antigen-amphiphiles contain a 

lipophilic albumin-binding diacyl lipid tail, PEG solubilizing linker and a vaccine cargo 

(peptide or other antigen, or adjuvant compound). b-c) Fluorophore-conjugated amphiphiles 

were injected s.c. in mice, and draining LNs were isolated and imaged 24 hours post 

injection. Albumin-binding amphiphiles accumulated in LNs in a lipid- (b, fixed PEG length 

48 EG units) and PEG- (c, fixed C18 diacyl lipid tails) molecular weight-dependent manner. 

d) Following vaccination, ‘albumin-hitchhiking’ vaccines (“Lipo” conjugates) elicited 

enhanced antigen-specific CD8+ T-cells responses compared to traditional peptide vaccines 

adjuvanted with the Toll-like receptor agonist CpG DNA. Shown are frequencies of antigen-

specific cytokine-producing T-cells among all CD8+ T-cells in peripheral blood 7 days post 

boost. Reprinted by permission from Macmillan Publishers Ltd: ref. 48, copyright 2014.
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Figure 3. Synthesis and antigen conjugation of pH-responsive endosomolytic polymers for 
vaccine delivery
a) Amphiphilic diblock copolymers were constructed with a hydrophilic block for antigen 

conjugation and a hydrophobic/endosomolytic block for promoting cytosolic antigen 

delivery. b), conjugation of ovalbumin (ova) antigen to the diblock polymeric carriers (pol) 

of panel (a) promoted MHC class I antigen presentation, as read out by production of LacZ 

(reported as an optical density at 570 nm) by a T-cell hybridoma reporter cell line incubated 

with dendritic cells loaded with the antigen. c) Dual delivery of ova antigen and CpG 

adjuvant on the pH-responsive polymer conjugate enhanced cellular responses in vivo, as 

determined by measuring the frequency of IFN-γ-producing CD8+ T-cells following 

immunization. Reprinted with permission from ref. 61, Copyright (2013) American 

Chemical Society.
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Figure 4. Monomeric peptides self-assemble into multivalent nanostructures
a and b) Lipid-conjugated peptide amphiphiles self-assemble into spherical (a) and 

cylindrical micelles (b). c and d) Peptides with intrinsic self-assembling properties provide a 

platform for multivalent display of antigens in nanoparticle (c) and nanofiber platforms (d). 

Reproduced with permission from ref. 90 (a), Copyright 2011 John Wiley & Sons Ltd; ref. 

91 (b), Copyright 2012 John Wiley & Sons Ltd; ref. 92 (c), Copyright 2009. The American 

Association of Immunologists, Inc. and ref. 95 (d), Copyright 2014 Macmillan Publishers 

Ltd.
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