29 research outputs found

    Intruder mobility in a vibrated granular packing

    Full text link
    We study experimentally the dynamics of a dense intruder sinking under gravity inside a vibrated 2D granular packing. The surrounding flow patterns are characterized and the falling trajectories are interpreted in terms of an effectivive friction coefficient related to the intruder mean descent velocity (flow rules). At higher confining pressures i.e. close to jamming, a transition to intermittent dynamics is evidenced and displays anomalous "on-off" blockade statistics. A systematic analysis of the flow rules, obtained for different intruder sizes, either in the flowing regime or averaged over the flowing and blockade regimes, strongly suggest the existence of non-local properties for the vibrated packing rheology.

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Concomitant homozygosity for the prothrombin gene variant with mild deficiency of antithrombin III in a patient with multiple hepatic infarctions: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hereditary causes of visceral thrombosis or thrombosis should be sought among young patients. We present a case of a young man presenting with multiple hepatic infarctions resulting in portal hypertension due to homozygosity of the prothrombin gene mutation not previously described in literature.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian man with a previous history of idiopathic deep vein thrombosis 11 years earlier presented with vague abdominal pains and mildly abnormal liver function tests. An ultrasound and computed tomography scan showed evidence of hepatic infarction and portal hypertension (splenic varices). A thrombophilia screen confirmed a homozygous mutation for the prothrombin gene mutation, with mildly reduced levels of anti-thrombin III (AT III). Subsequent testing of his father and brother revealed heterozygosity for the same gene mutation.</p> <p>Conclusion</p> <p>Hepatic infarction is unusual due to the rich dual arterial and venous blood supply to the liver. In the absence of an arterial or haemodynamic insult causing hepatic infarction, a thrombophilia should be considered. To our knowledge, this is the first reported case of a hepatic infarction due to homozygosity of the prothrombin gene mutation. It is unclear whether homozygotes have a higher risk of thrombosis than heterozygotes. In someone presenting with a first thrombosis with this mutation, the case for life-long anticoagulation is unclear, but it may be necessary to prevent a second and more severe second thrombotic event, as occurred in this case.</p

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy
    corecore