34 research outputs found

    MyD88 TIR domain higher-order assembly interactions revealed by microcrystal electron diffraction and serial femtosecond crystallography.

    Get PDF
    MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques

    Time-Resolved Crystallography

    No full text
    This Special Issue on ‘Time-Resolved Crystallography’ is a collection of eight original articles providing interesting results that give insight into the processes involved in generating and analysing time-resolved data [...

    The Influence of Photoelectron Escape in Radiation Damage Simulations of Protein Micro-Crystallography

    No full text
    Radiation damage represents a fundamental limit in the determination of protein structures via macromolecular crystallography (MX) at third-generation synchrotron sources. Over the past decade, improvements in both source and detector technology have led to MX experiments being performed with smaller and smaller crystals (on the order of a few microns), often using microfocus beams. Under these conditions, photoelectrons (PEs), the primary agents of radiation-damage in MX, may escape the diffraction volume prior to depositing all of their energy. The impact of PE escape is more significant at higher beam energies (>20 keV) as the electron inelastic mean free path (IMFP) is longer, allowing the electrons to deposit their energy over a larger area, extending further from their point of origin. Software such as RADDOSE-3D has been used extensively to predict the dose (energy absorbed per unit mass) that a crystal will absorb under a given set of experimental parameters and is an important component in planning a successful MX experiment. At the time this study was undertaken, dose predictions made using RADDOSE-3D were spatially-resolved, but did not yet account for the propagation of PEs through the diffraction volume. Hence, in the case of microfocus crystallography, it is anticipated that deviations may occur between the predicted and actual dose absorbed due to the influence of PEs. To explore this effect, we conducted a series of simulations of the dose absorbed by micron-sized crystals during microfocus MX experiments. Our simulations spanned beam and crystal sizes ranging from 1μm to 5μm for beam energies between 9 keV and 30 keV. Our simulations were spatially and temporarily resolved and accounted for the escape of PEs from the diffraction volume. The spatially-resolved dose maps produced by these simulations were used to predict the rate of intensity loss in a Bragg spot, a key metric for tracking global radiation damage. Our results were compared to predictions obtained using a recent version of RADDOSE-3D that did not account for PE escape; the predicted crystal lifetimes are shown to differ significantly for the smallest crystals and for high-energy beams, when PE escape is included in the simulations

    Analysis of Multi-Hit Crystals in Serial Synchrotron Crystallography Experiments Using High-Viscosity Injectors

    No full text
    Serial Synchrotron Crystallography (SSX) is rapidly emerging as a promising technique for collecting data for time-resolved structural studies or for performing room temperature micro-crystallography measurements using micro-focused beamlines. SSX is often performed using high frame rate detectors in combination with continuous sample scanning or high-viscosity or liquid jet injectors. When performed using ultra-bright X-ray Free Electron Laser (XFEL) sources serial crystallography typically involves a process known as ’diffract-and-destroy’ where each crystal is measured just once before it is destroyed by the intense XFEL pulse. In SSX, however, particularly when using high-viscosity injectors (HVIs) such as Lipidico, the crystal can be intercepted multiple times by the X-ray beam prior to exiting the interaction region. This has a number of important consequences for SSX including whether these multiple-hits can be incorporated into the data analysis or whether they need to be excluded due to the potential impact of radiation damage. Here, we investigate the occurrence and characteristics of multiple hits on single crystals using SSX with lipidico. SSX data are collected from crystals as they tumble within a high viscous stream of silicone grease flowing through a micro-focused X-ray beam. We confirmed that, using the Eiger 16M, we are able to collect up to 42 frames of data from the same single crystal prior to it leaving the X-ray interaction region. The frequency and occurrence of multiple hits may be controlled by varying the sample flow rate and X-ray beam size. Calculations of the absorbed dose confirm that these crystals are likely to undergo radiation damage but that nonetheless incorporating multiple hits into damage-free data should lead to a significant reduction in the number of crystals required for structural analysis when compared to just looking at a single diffraction pattern from each crystal

    Structure of human aldose reductase holoenzyme in complex with statil: an approach to structure-based inhibitor design of the enzyme

    No full text
    International audienceAldose reductase, a monomeric NADPH-dependent oxidoreductase, catalyzes the reduction of a wide variety of aldehydes and ketones to their corresponding alcohols. The X-ray structure of human aldose reductase holoenzyme in complex with statil was determined at a resolution of 2.1 A. The carboxylate group of statil interacted with the conserved anion binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Statil's hydrophobic phthalazinyl ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group penetrating the "specificity" pocket. The interactions between the inhibitor's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding to residues Leu300 and Thr113. Based on the model of the ternary complex, the program GRID was used in an attempt to design novel potential inhibitors of human aldose reductase with enhanced binding energies of the complex. Molecular modeling calculations suggested that the replacement of the fluorine atom of statil with a carboxylate functional group may enhance the binding energies of the complex by 33%

    Protein crystal screening and characterization for serial femtosecond nanocrystallography

    No full text
    Get it at UQ Library| Export | Download | Add to List | More... Scientific Reports Volume 6, 3 May 2016, Article number 25345 Open Access Protein crystal screening and characterization for serial femtosecond nanocrystallography (Article) Darmanin, C.a , Strachan, J.a, Adda, C.G.b, Ve, T.cd, Kobe, B.c, Abbey, B.ae a ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia c School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia View additional affiliations View references (19) Abstract The recent development of X-ray free electron lasers (XFELs) has spurred the development of serial femtosecond nanocrystallography (SFX) which, for the first time, is enabling structure retrieval from sub-micron protein crystals. Although there are already a growing number of structures published using SFX, the technology is still very new and presents a number of unique challenges as well as opportunities for structural biologists. One of the biggest barriers to the success of SFX experiments is the preparation and selection of suitable protein crystal samples. Here we outline a protocol for preparing and screening for suitable XFEL targets

    Effect of Lipidic Cubic Phase Structure on Functionality of the Dopamine 2L Receptor: Implications for in Meso Crystallization

    No full text
    The success of the lipidic cubic phase for crystallization, particularly of integral membrane proteins, is increasing. In the past two years, more than 25% of membrane protein structures have been solved within the biomimetic environment of the lipidic cubic phase. However, the relationship between the lipid matrix and crystal growth still remains a mystery. Herein we show that the bilayer structure of the lipidic cubic phase is crucial to retention of the functionality of the dopamine D2 long receptor. Destruction of the cubic architecture at higher protein concentrations is associated with a significant drop in the amount of functional receptor. This has profound implications for in meso crystallization and suggests that preliminary experiments to determine the maximum protein loading within the lipidic cubic phase must be carried out prior to in meso crystallization experiments
    corecore