3,116 research outputs found

    High-dimensional quantum dynamics of adsorption and desorption of H2_2 at Cu(111)

    Full text link
    We performed high-dimensional quantum dynamical calculations of the dissociative adsorption and associative desorption of hydrogen on Cu(111). The potential energy surface (PES) is obtained from density functional theory calculations. Two regimes of dynamics are found, at low energies sticking is determined by the minimum energy barrier, at high energies by the distribution of barrier heights. Experimental results are well-reproduced qualitatively, but some quantitative discrepancies are identified as well.Comment: 4 two column pages, revtex, 4 figures, to appear in Phys. Rev. Let

    Direct observation of the formation of polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 using neutron pair distribution function analysis

    Get PDF
    Using neutron pair distribution function (PDF) analysis over the temperature range from 1000 K to 15 K, we demonstrate the existence of local polarization and the formation of medium-range, polar nanoregions (PNRs) with local rhombohedral order in a prototypical relaxor ferroelectric Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3. We estimate the volume fraction of the PNRs as a function of temperature and show that this fraction steadily increases from 0 % to a maximum of ∼\sim 30% as the temperature decreases from 650 K to 15 K. Below T∼\sim200 K the PNRs start to overlap as their volume fraction reaches the percolation threshold. We propose that percolating PNRs and their concomitant overlap play a significant role in the relaxor behavior of Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3.Comment: 4 pages, 3 figure

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Random division of an interval

    Get PDF
    The well-known relation between random division of an interval and the Poisson process is interpreted as a Laplace transformation. With the use of this interpretation a number of (in part known) results is derived very easily

    Aharonov-Bohm-like effect for light propagating in nematics with disclinations

    Full text link
    Using a geometric approach for the propagation of light in anisotropic media, we investigate what effect the director field of disclinations may have on the polarization state of light. Parallel transport around the defect, of the spinor describing the polarization, indicates the acquisition of a topological phase, in analogy with the Aharonov-Bohm effect.Comment: 6 pages, to appear in Europhysics Letter

    On the joint residence time of N independent two-dimensional Brownian motions

    Full text link
    We study the behavior of several joint residence times of N independent Brownian particles in a disc of radius RR in two dimensions. We consider: (i) the time T_N(t) spent by all N particles simultaneously in the disc within the time interval [0,t]; (ii) the time T_N^{(m)}(t) which at least m out of N particles spend together in the disc within the time interval [0,t]; and (iii) the time {\tilde T}_N^{(m)}(t) which exactly m out of N particles spend together in the disc within the time interval [0,t]. We obtain very simple exact expressions for the expectations of these three residence times in the limit t\to\infty.Comment: 8 page

    Transforming teacher education, an activity theory analysis

    Get PDF
    This paper explores the work of teacher education in England and Scotland. It seeks to locate this work within conflicting socio-cultural views of professional practice and academic work. Drawing on an activity theory framework that integrates the analysis of these contradictory discourses with a study of teacher educators’ practical activities, including the material artefacts that mediate the work, the paper offers a critical perspective on the social organisation of university-based teacher education. Informed by Engeström’s activity theory concept of transformation, the paper extends the discussion of contradictions in teacher education to consider the wider socio-cultural relations of the work. The findings raise important questions about the way in which teacher education work within universities is organised and the division of labour between schools and universities

    Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders

    Full text link
    We study the effect of any uneven voltage distribution on two close cylindrical conductors with parallel axes that are slightly shifted in the radial and by any length in the axial direction. The investigation is especially motivated by certain precision measurements, such as the Satellite Test of the Equivalence Principle (STEP). By energy conservation, the force can be found as the energy gradient in the vector of the shift, which requires determining potential distribution and energy in the gap. The boundary value problem for the potential is solved, and energy is thus found to the second order in the small transverse shift, and to lowest order in the gap to cylinder radius ratio. The energy consists of three parts: the usual capacitor part due to the uniform potential difference, the one coming from the interaction between the voltage patches and the uniform voltage difference, and the energy of patch interaction, entirely independent of the uniform voltage. Patch effect forces and torques in the cylindrical configuration are derived and analyzed in the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit
    • …
    corecore