139 research outputs found

    Effect of a Glp-1 Mimetic on the Insulin Response to Oral Sugar Testing in Horses

    Get PDF
    BACKGROUND: Insulin dysregulation (ID) is the most important risk factor for the development of laminitis in horses and therapies to control it are needed. HYPOTHESIS/OBJECTIVES: To assess the effects of a single dose of the synthetic GLP-1 analog exenatide on postprandial insulin dynamics. We hypothesized that exenatide would improve insulin sensitivity and lower postprandial blood insulin concentrations. STUDY DESIGN: Randomized, crossover, experimental study. ANIMALS: Six horses (3 mares, 3 geldings; 2 with normal insulin regulation [NIR] and 4 with mild ID). METHODS: Horses completed both study arms: subcutaneous administration of exenatide (or no treatment) 30 min before an oral sugar test (0.15 ml/kg of Karo Syrup). Blood samples obtained over 240 min were assayed for glucose, insulin, lactate, c-peptide and total GLP-1. The area under the curve (AUC) was calculated using the trapezoidal rule. Insulin sensitivity (S RESULTS: Exenatide resulted in a postprandial decrease of 20% (effect size: 2673 µU·min/ml; 95% CI: 900 - 4446 µU·min/ml; P = 0.003) in AUC of plasma insulin (control; mean AUC insulin: 11,989 µU·min/ml; 95% CI: 9673 - 14,305 µU·min/ml, exenatide; mean AUC insulin: 9316 µU·min/ml; 95% CI: 7430 - 11,202 µU·min/ml). Exenatide resulted in an approximately threefold increase (effect size: 5.56 10 CONCLUSIONS: The decrease in insulin response to carbohydrates was due to an increase in whole-body insulin sensitivity. GLP-1 agonists may have therapeutic potential for ID in horses

    Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel

    Get PDF
    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation

    Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States.

    Get PDF
    ObjectiveTo determine whether geographical elevation is inversely associated with diabetes, while adjusting for multiple risk factors.MethodsThis is a cross-sectional analysis of publicly available online data from the Behavioral Risk Factor Surveillance System, 2009. Final dataset included 285,196 US adult subjects. Odds ratios were obtained from multilevel mixed-effects logistic regression analysis.ResultsAmong US adults (≥20 years old), the odds ratio for diabetes was 1.00 between 0 and 499 m of altitude (reference), 0.95 (95% confidence interval, 0.90-1.01) between 500 and 1,499 m, and 0.88 (0.81-0.96) between 1,500 and 3,500 m, adjusting for age, sex, body mass index, ethnicity, self-reported fruit and vegetable consumption, self-reported physical activity, current smoking status, level of education, income, health status, employment status, and county-level information on migration rate, urbanization, and latitude. The inverse association between altitude and diabetes in the US was found among men [0.84 (0.76-0.94)], but not women [1.09 (0.97-1.22)].ConclusionsAmong US adults, living at high altitude (1,500-3,500 m) is associated with lower odds of having diabetes than living between 0 and 499 m, while adjusting for multiple risk factors. Our findings suggest that geographical elevation may be an important factor linked to diabetes

    OGTT-Derived Measures of Insulin Sensitivity Are Confounded by Factors Other Than Insulin Sensitivity Itself

    Get PDF
    Insulin resistance is an important risk factor for diabetes and other diseases. It has been important to estimate insulin resistance in epidemiological and genetic studies involving significant number of individuals. Complex and invasive protocols are impractical. Therefore, insulin sensitivity indices based on the oral glucose-tolerance test (OGTT) have been introduced. The aim of the present study was to assess the accuracy with which OGTT-derived indices would reflect changes in insulin sensitivity in the face of changes in other factors, such as rate of glucose absorption and/or B-cell function. A computer model was employed to predict excursions of plasma glucose and insulin after a 75-g oral glucose load. The model was then used to predict changes in these excursions, which would be observed with altered insulin resistance, with alterations in β-cell sensitivity to glucose and/or alterations in glucose absorption rates. Published indices of insulin sensitivity could then be calculated from the predicted curves, to ask whether changes in β-cell function or glucose absorptions rates might be misinterpreted (using the indices) as changes in insulin sensitivity. The model accurately represented OGTT data for a normal glucose tolerant subject, closely matching published data. Imposed 50% reductions or increases in insulin sensitivity alone in the model were reflected in only small changes in OGTT-derived insulin sensitivity values. More important, imposed alterations in β-cell sensitivity and glucose absorption without simulated changes in insulin sensitivity did change insulin sensitivity indices. These results indicate that caution is required for the interpretation of differences in OGTT-derived values of insulin sensitivity, because variation in factors other than insulin sensitivity per se appear to have the greatest effects on indices calculated from the OGTT alone

    Measurement of 8-Hydroxy-2′-Deoxyguanosine in Serum and Cerebrospinal Fluid of Horses With Neuroaxonal Degeneration and Other Causes of Proprioceptive Ataxia

    Get PDF
    BACKGROUND: Eight-hydroxy-2\u27-deoxyguanosine (8-OHdG), a biomarker of oxidative damage evaluated in human neurodegenerative disease, has potential to correlate with postmortem diagnosis of neuroaxonal dystrophy/degenerative myeloencephalopathy (NAD/DM) in horses. HYPOTHESIS: We hypothesized that 8-OHdG will be higher in CSF and serum from NAD/DM horses compared with horses with other neurologic diseases (CVSM, EPM) and a control group of neurologically normal horses. We also hypothesized that 8-OHdG will be higher in CSF compared with serum from NAD/DM horses. ANIMALS: Fifty client-owned horses with postmortem diagnoses: 20 NAD/DM, 10 CVSM, 10 EPM, and 10 control horses. Serum and CSF samples were obtained between November 2010 and March 2022. METHODS: Case-control study using biobanked samples was performed and commercial competitive ELISA kit (Highly Sensitive 8-OHdG Check ELISA) utilized. Concentration of 8-OHdG was quantitated in both CSF and serum and compared between groups. RESULTS: No correlation was established between the measures of 8-OHdG in serum and CSF and group. CSF median [8-OHdG] for NAD/DM was 169.9 pg/mL (IQR CONCLUSIONS: Eight-OHdG did not aid in antemortem diagnosis of NAD/DM in this cohort of horses. At the time of diagnosis horses with NAD/DM do not have ongoing oxidative stress

    Measurement of 8-Hydroxy-2′-Deoxyguanosine in Serum and Cerebrospinal Fluid of Horses With Neuroaxonal Degeneration and Other Causes of Proprioceptive Ataxia

    Get PDF
    BACKGROUND: Eight-hydroxy-2\u27-deoxyguanosine (8-OHdG), a biomarker of oxidative damage evaluated in human neurodegenerative disease, has potential to correlate with postmortem diagnosis of neuroaxonal dystrophy/degenerative myeloencephalopathy (NAD/DM) in horses. HYPOTHESIS: We hypothesized that 8-OHdG will be higher in CSF and serum from NAD/DM horses compared with horses with other neurologic diseases (CVSM, EPM) and a control group of neurologically normal horses. We also hypothesized that 8-OHdG will be higher in CSF compared with serum from NAD/DM horses. ANIMALS: Fifty client-owned horses with postmortem diagnoses: 20 NAD/DM, 10 CVSM, 10 EPM, and 10 control horses. Serum and CSF samples were obtained between November 2010 and March 2022. METHODS: Case-control study using biobanked samples was performed and commercial competitive ELISA kit (Highly Sensitive 8-OHdG Check ELISA) utilized. Concentration of 8-OHdG was quantitated in both CSF and serum and compared between groups. RESULTS: No correlation was established between the measures of 8-OHdG in serum and CSF and group. CSF median [8-OHdG] for NAD/DM was 169.9 pg/mL (IQR CONCLUSIONS: Eight-OHdG did not aid in antemortem diagnosis of NAD/DM in this cohort of horses. At the time of diagnosis horses with NAD/DM do not have ongoing oxidative stress

    Greater Omentectomy Improves Insulin Sensitivity in Nonobese Dogs

    Get PDF
    Visceral adiposity is strongly associated with insulin resistance; however, little evidence directly demonstrates that visceral fat per se impairs insulin action. Here, we examine the effects of the surgical removal of the greater omentum and its occupying visceral fat, an omentectomy (OM), on insulin sensitivity (SI) and β-cell function in nonobese dogs. Thirteen male mongrel dogs were used in this research study; animals were randomly assigned to surgical treatment with either OM (n = 7), or sham-surgery (SHAM) (n = 6). OM failed to generate measurable changes in body weight (+2%; P = 0.1), or subcutaneous adiposity (+3%; P = 0.83) as assessed by magnetic resonance imaging (MRI). The removal of the greater omentum did not significantly reduce total visceral adipose volume (−7.3 ± 6.4%; P = 0.29); although primary analysis showed a trend for OM to increase SI when compared to sham operated animals (P = 0.078), further statistical analysis revealed that this minor reduction in visceral fat alleviated insulin resistance by augmenting SI of the periphery (+67.7 ± 35.2%; P = 0.03), as determined by the euglycemic-hyperinsulinemic clamp. Insulin secretory response during the hyperglycemic step clamp was not directly influenced by omental fat removal (presurgery 6.82 ± 1.4 vs. postsurgery: 6.7 ± 1.2 pmol/l/mg/dl, P = 0.9). These findings provide new evidence for the deleterious role of visceral fat in insulin resistance, and suggest that a greater OM procedure may effectively improve insulin sensitivity

    AKA-TPG: A Program for Kinetic and Epidemiological Analysis of Data from Labeled Glucose Investigations Using the Two-Pool Model and Database Technology

    Get PDF
    Background: The Two-Pool Glucose (TPG) model has an important role to play in diabetes research since it enables analysis of data obtained from the frequently sampled labeled (hot) glucose tolerance test (FSHGT). TPG modeling allows determination of the separate effects of insulin on the disposal of glucose and on the hepatic production of glucose. It therefore provides a basis for the accurate estimation of glucose effectiveness, insulin sensitivity, and the profile of the rate of endogenous glucose production. Until now, there has been no program available dedicated to the TPG model, and a number of technical reasons have deterred researchers from performing TPG analysis. Methods and Results: In this paper, we describe AKA-TPG, a new program that combines automatic kinetic analysis of the TPG model data with database technologies. AKA-TPG enables researchers who have no expertise in modeling to quickly fit the TPG model to individual FSHGT data sets consisting of plasma concentrations of unlabeled glucose, labeled glucose, and insulin. Most importantly, because the entire process is automated, parameters are almost always identified, and parameter estimates are accurate and reproducible. AKA-TPG enables the demographic data of hundreds of individual subjects, their individual unlabeled and labeled glucose and insulin data, and each subject\u27s parameters and indices derived from AKA-TPG to be securely stored in, and retrieved from, a database. We describe how the stratification and population analysis tools in AKA-TPG are used and present population estimates of TPG model parameters for young, healthy (without diabetes) Nordic men. Conclusion: Researchers now have a practical tool to enable kinetic and epidemiological analysis of TPG data sets

    Insulin Action, Glucose Homeostasis and Free Fatty Acid Metabolism: Insights From a Novel Model

    Get PDF
    Glucose and free fatty acids (FFA) are essential nutrients that are both partly regulated by insulin. Impaired insulin secretion and insulin resistance are hallmarks of aberrant glucose disposal, and type 2 diabetes (T2DM). In the current study, a novel model of FFA kinetics is proposed to estimate the role insulin action on FFA lipolysis and oxidation allowing estimation of adipose tissue insulin sensitivity (SIFFA). Twenty-five normal volunteers were recruited for the current study. To participate, volunteers had to be less than 40 years of age and have a body mass index (BMI) < 30 kg/m2, and be free of medical comorbidity. The proposed model of FFA kinetics was used to analyze the data derived from the insulin-modified FSIGT. Mean fractional standard deviations of the parameter estimates were all less than 20%. Standardized residuals of the fit of the model to the FFA temporal data were randomly distributed, with only one estimated point lying outside the 2-standard deviation range, suggesting an acceptable fit of the model to the FFA data. The current study describes a novel one-compartment non-linear model of FFA kinetics during an FSIGT that provides an FFA metabolism insulin sensitivity parameter (SIFFA). Furthermore, the models suggest a new role of glucose as the modulator of FFA disposal. Estimates of SIFFA confirmed previous findings that FFA metabolism is more sensitive to changes in insulin than glucose metabolism. Novel derived indices of insulin sensitivity of FFA (SIFFA) were correlated with minimal model indices. These associations suggest a cooperative rather than competitive interplay between the two primary nutrients (glucose and FFA) and allude to the FFA acting as the buffer, such that glucose homeostasis is maintained

    MINMOD Millennium: A Computer Program to Calculate Glucose Effectiveness and Insulin Sensitivity From the Frequently Sampled Intravenous Glucose Tolerance Test

    Get PDF
    The Bergman Minimal Model enables estimation of two key indices of glucose/insulin dynamics: glucose effectiveness and insulin sensitivity. In this paper we describe MINMOD Millennium, the latest Windows-based version of minimal model software. Extensive beta testing of MINMOD Millennium has shown that it is user-friendly, fully automatic, fast, accurate, reproducible, repeatable, and highly concordant with past versions of MINMOD. It has a simple interface, a comprehensive help system, an input file editor, a file converter, an intelligent processing kernel, and a file exporter. It provides publication-quality charts of glucose and insulin and a table of all minimal model parameters and their error estimates. In contrast to earlier versions of MINMOD and some other minimal model programs, Millennium provides identified estimates of insulin sensitivity and glucose effectiveness for almost every subject
    corecore