34 research outputs found

    Microstructure and plastic properties of mg-Li alloys smelted in vacuum induction furnaces after hot working

    Get PDF
    The paper analyses the characteristics of plasticity and microstructure of magnesium alloys with lithium meant for hot plastic working with different lithium content. The alloys were prepared in conditions of vacuum smelting. Achieved ingots were subject to hot extrusion. Tests on Gleeble simulator were conducted to assess the susceptibility of tested alloys to plastic forming in conditions of hot plastic working. For tested alloy the activation energy was marked for hot plastic deformation and plasticity characteristics in function of Zener-Hollomon parameter. After the analysis of the influence of temperature on the deformability of tested alloys it was stated that the alloy containing 8% Li (LAZ831) has better susceptibility to plastic treatment than alloy containing 4% Li (LAZ431), but higher than in case of classic magnesium alloys-AZ31.Web of Science6231432142

    The Influence of the Deformation Method on the Microstructure and Properties of Magnesium Alloy Mg-Y-RE-Zr

    No full text
    This article presents the influence of the applied extrusion method on the microstructure and mechanical properties of the WE43 magnesium alloy. The materials for tests were ingots made from magnesium alloy, with dimensions of 40 × 90 mm, marked with the symbol WE43. Two extrusion methods were used: the classic one—concurrent extrusion, and the complex one—concurrent extrusion with a reversible die (KoBo). As a result of the application of deformation processes, rods were obtained. The implemented deformation methods made it possible to determine the influence of the deformation process parameters on changes in the structure and properties of the WE43 alloy. In addition, compression tests were performed to determine the values of the yield stress and to analyze changes in the microstructure after plastic deformation. The hot plastic deformation activation energy and the process parameters, for which the course of plastic flow is affected by the presence of twins in the microstructure, were determined for the WE43 alloy. The effects of superplastic flow at 350 °C (250% elongation) and microstructure refinement (d = 1 µm) were demonstrated after applying the KoBo method. The results will be useful in the development of forming technology of selected construction elements, which serve as light substitutes for currently used materials

    Model of Microstructure Development in Hot Deformed Magnesium Alloy AZ31 Type

    No full text

    FPGA-Oriented LDPC Decoder for Cyber-Physical Systems

    No full text
    A potentially useful Cyber-Physical Systems element is a modern forward error correction (FEC) coding system, utilizing a code selected from the broad class of Low-Density Parity-Check (LDPC) codes. In this paper, development of a hardware implementation in an FPGAs of the decoder for Quasi-Cyclic (QC-LDPC) subclass of codes is presented. The decoder can be configured to support the typical decoding algorithms: Min-Sum or Normalized Min-Sum (NMS). A novel method of normalization in the NMS algorithm is proposed, one that utilizes combinational logic instead of arithmetic units. A comparison of decoders with different bit-lengths of data (beliefs that are messages propagated between computing units) is also provided. The presented decoder has been implemented with a distributed control system. Experimental studies were conducted using the Intel Cyclone V FPGA module, which is a part of the developed testing environment for LDPC coding systems

    Characteristics of plasticity and microstructure of hot forming magnesium alloys Mg-Al-Zn type

    Get PDF
    The paper presents analysis of plasticity characteristics and microstructure of magnesium alloys for hot plastic treatment with different aluminium content (3÷8%). Tests were conducted for assessment of susceptibility of tested alloys to hot plastic deformation. A tensile test was run in temperature from 250 to 450°C. Based on the results, ultimate tensile strength (UTS) and reduction of area (Z) were determined for samples. Conducted compression tests allowed to specify the flow stress and microstructure changes after deformation. The activation energy in hot forming was determined for investigated alloys. The parameters of the process where flow is significantly influenced by twin formation in microstructure were determined. A varied plasticity of tested alloys was found depending on aluminium content. Test results will be useful in development of forging technology of selected construction elements which serve as light substitutes for currently used materials.Web of Science58115615

    Low Power QC-LDPC Decoder Based on Token Ring Architecture

    No full text
    The article presents an implementation of a low power Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder in a Field Programmable Gate Array (FPGA) device. The proposed solution is oriented to a reduction in dynamic energy consumption. The key research concepts present an effective technology mapping of a QC-LDPC decoder to an LUT-based FPGA with many limitations. The proposed decoder architecture uses a distributed control system and a Token Ring processing scheme. This idea helps limit the clock skew problem and is oriented to clock gating, a well-established concept for power optimization. Then the clock gating of the decoder building blocks allows for a significant reduction in energy consumption without deterioration in other parameters of the decoder, particularly its error correction performance. We also provide experimental results for decoder implementations with different QC-LDPC codes, indicating important characteristics of the code parity check matrix, for which an energy-saving QC-LDPC decoder with the proposed architecture can be designed. The experiments are based on implementations in the Intel Cyclone V FPGA device. Finally, the presented architecture is compared with the other solutions from the literature

    Superplastic Deformation of Al–Cu Alloys after Grain Refinement by Extrusion Combined with Reversible Torsion

    No full text
    The binary as-cast Al–Cu alloys Al-5%Cu, Al-25%Cu, and Al-33%Cu (in wt %), composed of the intermetallic θ-Al2Cu and α-Al phases, were prepared from pure components and were subsequently severely plastically deformed by extrusion combined with reversible torsion (KoBo) to refinement of α-Al and Al2Cu phases. The extrusion combined with reversible torsion was carried out using extrusion coefficients of λ = 30 and λ = 98. KoBo applied to the Al–Cu alloys with different initial structures (differences in fraction and phase size) allowed us to obtain for alloys (Al-25%Cu and Al-33%Cu), with higher value of intermetallic phase, large elongations in the range of 830–1100% after tensile tests at the temperature of 400 °C with the strain rate of 10−4 s−1. The value of elongation depended on extrusion coefficient and increase, with λ increasing as a result of α-Al and Al2Cu phase refinement to about 200–400 nm. Deformation at the temperature of 300 °C, independently of the extrusion coefficient (λ), did not ensure superplastic properties of the analyzed alloys. A microstructural study showed that the mechanism of grain boundary sliding was responsible for superplastic deformation

    Activation energy in hot forming and recrystallization models for magnesium alloy AZ31

    No full text
    Kinetics of the dynamic, as well as postdynamic recrystallization of the wrought magnesium alloy AZ31, was ascertained. Continuous compression tests associated with the study of dynamic recrystallization were realized at temperatures from 523 to 723 K and at the strain rates from 0.001 to 10 s−1. The activation energy in hot forming was determined as Q = 158 kJ/mol for stress-strain curves of conventional shape, or Q = 146 kJ/mol for stress-strain curves with the concave initial phase affected by twinning. If the Zener-Hollomon parameter Z > 9.1 × 1012 s−1 the deformation necessary for the initiation of dynamic recrystallization is almost independent on the forming parameters. Using the results of the stress relaxation tests, equations describing the kinetics of metadynamic recrystallization and the grain size originated in such a way were developed and the effect of individual variables was evaluated.Web of Science22389789

    Effect of Magnesium Matrix Grain Refinement Induced by Plastic Deformation in a Composite with Short Carbon Fibers

    No full text
    The magnesium matrix composite reinforced with 3 vol. % of short carbon fibers (Csf), fabricated, under industrial conditions, by the stir casting method, was applied to obtain composite bars by two extrusion methods: the novel method of cold severe plastic deformation with a forward-backward rotating die (KoBo) and conventional extrusion at 400 °C. The effect of Mg(α) grain refining, as well as fibers behavior and phenomenon at the fiber-matrix interface, was examined by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy and scanning-transmission electron microscopy methods. The Mg(α) grain quantitative characteristics revealed a decrease of the equivalent diameter from 219 ± 76 μm (as-cast) to 24 ± 10 μm and 0.89 ± 0.35 μm (the hot-extruded and KoBo-processed, respectively). In addition, due to the KoBo application, except for the Csf orientation that was parallel to the extrusion direction, an effect of fibers fragmentation on the length of few Csf diameters was detected. No significant changes in the Csf-matrix interface (besides those between new carbon surfaces) formed by fibers fragmentation, and the matrix created by extrusion were detected. A comparison of the mechanical properties of the Mg-Csf composite showed that the KoBo method ensured a spectacular increase in strength and plasticity
    corecore