72 research outputs found

    Identification of ä-Spectrin Domains Susceptible to Ubiquitination

    Get PDF
    Previously, we demonstrated that alpha-spectrin is a substrate for the ubiquitin system and that this conjugation is a dynamic process (Corsi, D., Galluzzi, L., Crinelli, R., and Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935). In this study, we mapped the sites of ubiquitination on erythrocyte alpha-spectrin. A peptide map of digested alpha-spectrin, previously submitted to in vitro 125I-ubiquitin conjugation, revealed the presence of four distinct labeled bands with Mr 40,000, 36,000, 29,000, and 25,500. Western blotting experiments using antibodies against each alpha-spectrin domain revealed that only IgG anti-alphaIII domain recognized the 125I-labeled ubiquitin peptide of 29 kDa, whereas the IgG anti-alphaV domain recognized the Mr 40,000 125I-ubiquitin-labeled peptide. The other two labeled bands of Mr 36,000 and Mr 25,500 were identified as tetra and tri multiubiquitin chains. Ubiquitination of the alphaIII and alphaV domains was further confirmed by anti-alpha-spectrin domain immunoaffinity chromatography. Endoprotease Lys C-digested spectrin conjugated previously to 125I-ubiquitin was incubated with antibodies against each trypsin-resistant domain of alpha-spectrin. Gamma counting of the radiolabeled antigen-antibody complexes purified by protein A chromatography showed labeling in the IgG anti-alphaIII and anti-alphaV complexes alone. Domain alphaIII is not associated with any known function, whereas domain alphaV contains the nucleation site for the association of the alpha and beta chains. Ubiquitination of the latter domain suggests a role for ubiquitin in the modulation of the stability, deformability, and viscoelastic properties of the erythrocyte membrane

    An upper-limit on the linear polarization fraction of the GW170817 radio continuum

    Get PDF
    We present late-time radio observations of GW170817, the first binary neutron star merger discovered through gravitational waves by the advanced LIGO and Virgo detectors. Our observations, carried out with the Karl G. Jansky Very Large Array, were optimized to detect polarized radio emission, and thus to constrain the linear polarization fraction of GW170817. At an epoch of ~244 days after the merger, we rule out linearly polarized emission above a fraction of ~12% at a frequency of 2.8 GHz (99% confidence). Within the structured jet scenario (a.k.a. successful jet plus cocoon system) for GW170817, the derived upper-limit on the radio continuum linear polarization fraction strongly constrains the magnetic field configuration in the shocked ejecta. We show that our results for GW170817 are compatible with the low level of linear polarization found in afterglows of cosmological long gamma-ray bursts. Finally, we discuss our findings in the context of future expectations for the study of radio counterparts of binary neutron star mergers identified by ground-based gravitational-wave detectors.Comment: 5 pages, 2 figures, 1 tabl

    Carcinoma cuniculatum of the larynx

    Get PDF
    Carcinoma cuniculatum (CC) is a rare clinicopathologic variant of squamous cell carcinoma. Histologically, it is characterized by invasive growth of bland, acanthotic, and keratinizing squamous epithelium that forms multiple rabbit burrow-like, keratin-filled crypts and sinuses. We present a 51-year-old male smoker with CC of the left vocal cord. The tumor was staged T1a and the patient was disease-free 12 months after surgery. To our knowledge, this is the fourth case of CC of the larynx reported in the English literature and the first, due to its early diagnosis, where radical surgery was not performed. We highlight the necessity for awareness of this entity and coordination between otolaryngologists, radiologists, and pathologists for early diagnosis and organ-sparing surgical treatment

    AT2019wxt: An ultra-stripped supernova candidate discovered in electromagnetic follow-up of a gravitational wave trigger

    Full text link
    We present optical, radio and X-ray observations of a rapidly-evolving transient AT2019wxt (PS19hgw), discovered during the search for an electromagnetic (EM) counterpart to the gravitational-wave (GW) trigger S191213g (LIGO Scientific Collaboration & Virgo Collaboration 2019a). Although S191213g was not confirmed as a significant GW event in the off-line analysis of LIGO-Virgo data, AT2019wxt remained an interesting transient due its peculiar nature. The optical/NIR light curve of AT2019wxt displayed a double-peaked structure evolving rapidly in a manner analogous to currently know ultra-stripped supernovae (USSNe) candidates. This double-peaked structure suggests presence of an extended envelope around the progenitor, best modelled with two-components: i) early-time shock-cooling emission and ii) late-time radioactive 56^{56}Ni decay. We constrain the ejecta mass of AT2019wxt at Mej≈0.20M⊙M_{ej} \approx{0.20 M_{\odot}} which indicates a significantly stripped progenitor that was possibly in a binary system. We also followed-up AT2019wxt with long-term Chandra and Jansky Very Large Array observations spanning ∼\sim260 days. We detected no definitive counterparts at the location of AT2019wxt in these long-term X-ray and radio observational campaigns. We establish the X-ray upper limit at 9.93×10−179.93\times10^{-17} erg cm−2^{-2} s−1^{-1} and detect an excess radio emission from the region of AT2019wxt. However, there is little evidence for SN1993J- or GW170817-like variability of the radio flux over the course of our observations. A substantial host galaxy contribution to the measured radio flux is likely. The discovery and early-time peak capture of AT2019wxt in optical/NIR observation during EMGW follow-up observations highlights the need of dedicated early, multi-band photometric observations to identify USSNe.Comment: 20 pages, 14 figures, Submitted to Ap

    An Upper Limit on the Linear Polarization Fraction of the GW170817 Radio Continuum

    Get PDF
    We present late-time radio observations of GW170817, the first binary neutron-star (NS) merger discovered through gravitational waves (GWs) by the advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Our observations, carried out with the Karl G. Jansky Very Large Array (VLA), were optimized to detect polarized radio emission, and thus to constrain the linear polarization fraction of GW170817. At an epoch of ≈244 days after the merger, we rule out linearly polarized emission above a fraction of ≈12% at a frequency of 2.8 GHz (99% confidence). Within the structured jet scenario (a.k.a. successful jet plus cocoon system) for GW170817, the derived upper limit on the radio continuum linear polarization fraction strongly constrains the magnetic field configuration in the shocked ejecta. We show that our results for GW170817 are compatible with the low level of linear polarization found in afterglows of cosmological long γ-ray bursts (GRBs). Finally, we discuss our findings in the context of future expectations for the study of radio counterparts of binary NS mergers identified by ground-based GW detectors
    • …
    corecore