3 research outputs found

    Synthesis and characterization of catalysts used for the catalytic oxidation of sulfur-containing volatile organic compounds:focus on sulfur-induced deactivation

    No full text
    Abstract The work in this thesis concentrates on finding more active and durable catalysts for the demanding environmental application of the oxidation of sulfur-containing volatile organic compounds (S-VOCs). This application is challenging due to the high purification levels required and the catalyst deactivating nature of sulfur. In this thesis, dimethyldisulfide (DMDS) was used as the model molecule to represent S-VOCs since it is often present in odorous emissions and it is more difficult to treat than most of the other S-VOCs. It was found that the addition of a very small amount of Pt (0.3%) especially improves the selectivity of copper oxide based catalysts towards complete oxidation products ((carbon dioixide (CO2), water (H2O) and sulfur dioxide (SO2)) in DMDS oxidation. Catalyst characterization by transmission electron microscopy, temperature programmed reduction and X-ray photoelectron spectroscopy analyses suggests that this promoting effect is most likely due to the close interaction between Cu and Pt species on the bimetallic PtCu/γ-Al2O3 catalyst. The drawback of using the Al2O3 support is that it is not resistant towards sulfur poisoning. The deactivation of the self-made catalysts was studied with the help of an accelerated ageing procedure that was developed based on the information from the industrially aged volatile organic compound (VOC) catalysts. Industrial deactivation was caused by the sintering of the support and active metals and by the formation of metal sulfates with the support. After accelerated ageing, the silica doped alumina (Al2O3)0.8(SiO2)0.2 supported catalyst, showed remarkably promising results in terms of stability towards sulfur poisoning and the activity in DMDS oxidation was very close to that of the most active PtCu/Al2O3. The addition of less than 20% of SiO2 on the Al2O3 support led to a catalyst that is more selective and resistant to sulfur poisoning.Tiivistelmä Väitöskirjassa tuotetaan uutta tietoa rikkipitoisten orgaanisten yhdisteiden (S-VOC) hapetukseen soveltuvien uusien katalyyttisten materiaalien synteesistä ja karakterisoinnista. S-VOC-yhdisteiden käsittely on vaativa katalyyttisen polton sovellus, koska näiden päästöjen käsittely edellyttää korkeaa puhdistustehoa, ja lisäksi yhdisteiden sisältämä rikki on katalyyttimyrkky. Tässä väitöskirjassa valittiin S-VOC-yhdisteitä edustavaksi malliaineeksi dimetyylisulfidi (DMDS), koska se on usein mukana käsiteltävissä S-VOC-päästöissä ja sen käsittely on vaativampaa kuin useiden muiden S-VOC-yhdisteiden käsittely. Tutkimustulosten mukaan hyvin pieni Pt-lisäys (0.3 %) parantaa erityisesti kuparioksidikatalyyttien selektiivisyyttä DMDS:n kokonaishapetustuotteiksi (CO2, H2O, SO2). Katalyyttien karakterisoinnin (läpäisyelektronimikroskopia, lämpötilaohjattu pelkistysreaktio, röntgensädefotoelektronispektroskopia) perusteella voidaan esittää parannuksen syyksi kuparin ja platinan läheinen kontakti bimetallisen PtCu/γ-Al2O3-katalyytin pinnalla. Al2O3-tukiaineen heikkoutena on sen deaktivoitumisherkkyys rikkiyhdisteiden läsnä ollessa. Väitöskirjatyössä valmistettujen katalyyttien deaktivitumista tutkittiin laboratoriomittakaavassa nopeutettujen ikäytyskokeiden avulla, jotka kehitettiin teollisessa käytössä deaktivoituneen katalyytin karakterisointien avulla saadun tiedon perusteella. Teollisessa käytössä olleen katalyytin deaktivoitumisen syyksi havaittiin tukiaineen ja aktiivisten metallien sintrautuminen sekä metallisulfidien muodostuminen tukiaineen kanssa. Nopeutettujen ikäytyskokeiden tulosten perusteella havaittiin, että piidioksidin lisäys alumiinioksiditukiaineeseen paransi tukiaineen rikin kestoa merkittävästi. Tutkimuksissa havaittiin myös, että piidioksidilla muokatun katalyytin aktiivisuus oli hyvin lähellä vastaavaa PtCu/γ-Al2O3-katalyytin aktiivisuutta. DMDS:n hapetuksessa selektiivisempi ja stabiilimpi katalyytti voidaan aikaansaada alle 20 %:n SiO2-lisäyksellä Al2O3-tukiaineeseen

    Study on sulfur deactivation of catalysts for DMDS oxidation

    No full text
    Abstract In the present research, an industrially aged Pt/Al₂O₃ catalyst was used as a basis for the study on the sulfur deactivation and the development of more resistant catalytic materials. The catalytic activities of both industrially and laboratory-aged materials in DMDS oxidation were studied in addition to characterization by XRD, XPS, FESEM, TEM and N₂ adsorption. The industrial ageing induced a phase change from γ-Al₂O₃ towards θ-Al₂O₃, formation of aluminum sulfates and an increase in Pt particle size as well as a change in the oxidation state of Pt to a higher state. These changes caused an increase of 30 °C in the light-off temperature for DMDS oxidation. Accelerated ageing in the presence of SO₂ and H₂O vapor at 400 °C for 5 h decreased the activity of the Pt/Al₂O₃ at the same level than for the industrially aged catalyst even though smaller sulfur content and no sintering of γ-Al₂O₃ were observed. Pt sintering (10–20 nm) in both cases was observed. The XPS results confirmed the formation of new sulfate phases and the interaction between sulfur and the active phase as well as the support of the catalyst undergone accelerated ageing. After the accelerated ageing of copper-based catalysts, the 0.3Pt10Cu/Al₂O₃ǀ0.8SiO₂ǀ0.2 catalyst showed an interesting resistance towards sulfur deactivation, as it was expected

    Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts

    No full text
    Abstract The aim of this work was to study the influence of the support oxide properties on the total oxidation of dichloromethane in moist conditions. The support materials γ-Al2O3, TiO2, CeO2 and MgO were synthesized by a sol-gel method followed by wet impregnation of Pt and characterized by different physico-chemical techniques. The conversion of DCM was higher than 90% at 500 °C over impregnated and non-impregnated Al2O3, TiO2 and CeO2, even at high GHSV. CO, CH3Cl and CH2O were the major by-products observed and their amounts decreased after Pt impregnation. The CH3Cl formation was higher when Lewis acid sites were present while the existence of Brønsted sites promoted the CH2O formation. The complete conversion of DCM was achieved at around 450 °C over the Al2O3 and Pt/Al2O3 and at 500 °C for Pt/TiO2. These two catalysts exhibited the highest total acidities among the materials tested. The activity of Pt/Al2O3 remained the same also after 55 h of testing, however, increase in Pt particle size and decrease in acidity were observed. Pt/CeO2 while being less active showed smallest amount of by-product formation during the whole temperature range used in light-off tests. This is most probably due to its easy reduction ability. The textural parameters of the supports did not appear to be the key parameters when considering the activity and selectivity of the catalysts
    corecore