21 research outputs found

    Surface Optical Waves at Air/Metal Interfaces: Surface Plasmon Polaritons

    Get PDF
    The surface plasmon resonance (SPR) phenomenon has been known for nearly five decades now; since then this method has made great advances in terms of instrumentation development and applications, and it still attracts researchers because of certain subtle issues that could benefit from it mainly detection and analysis of chemical and biochemical substances in different areas including medicine, environmental monitoring, biotechnology and drug and food monitoring. Our interest is focused on the use of this technique for studying thin coating and some application in nanophotonics. In this paper, we discuss the configuration of surface plasmons at air/metal interface by Atenuated total reflection (ATR) technique in the Kretchman configuration, and we present preliminary experimental results on surface plasmons at a Ag/air interface that we obtained in our laboratory.The surface plasmon resonance (SPR) phenomenon has been known for nearly five decades now; since then this method has made great advances in terms of instrumentation development and applications, and it still attracts researchers because of certain subtle issues that could benefit from it mainly detection and analysis of chemical and biochemical substances in different areas including medicine, environmental monitoring, biotechnology and drug and food monitoring. Our interest is focused on the use of this technique for studying thin coating and some application in nanophotonics. In this paper, we discuss the configuration of surface plasmons at air/metal interface by Atenuated total reflection (ATR) technique in the Kretchman configuration, and we present preliminary experimental results on surface plasmons at a Ag/air interface that we obtained in our laboratory

    Onset of dielectric modes at 110K and 60K due to local lattice distortions in non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals

    Full text link
    We report the observation of two dielectric transitions at 110K and 60K in the microwave response of non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals. The transitions are characterized by a change in polarizability and presence of loss peaks, associated with overdamped dielectric modes. An explanation is presented in terms of changes in polarizability of the apical O atoms in the Ba-O layer, affected by lattice softening at 110K, due to change in buckling of the Cu-O layer. The onset of another mode at 60K strongly suggests an additional local lattice change at this temperature. Thus microwave dielectric measurements are sensitive indicators of lattice softening which may be relevant to superconductivity.Comment: 5 pages, 3 ps format figure

    The vortex motion and the magnetization study in YBa2Cu3O7-d single crystal

    Get PDF
    We have investigated the vortex motion and the magnetization of high critical temperature superconductors YBa2Cu3O7-d Measurements were made using a vibrating sample magnetometer technique. Several magnetization hysteresis cycles have been obtained for different angles, θ, between the applied magnetic field, H, and the crystallographic c-axis. For T = 30 K we observed a central peak and for T = 80 K we observed a second peak or "fishtail".We have investigated the vortex motion and the magnetization of high critical temperature superconductors YBa2Cu3O7-d Measurements were made using a vibrating sample magnetometer technique. Several magnetization hysteresis cycles have been obtained for different angles, θ, between the applied magnetic field, H, and the crystallographic c-axis. For T = 30 K we observed a central peak and for T = 80 K we observed a second peak or "fishtail"

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged

    Self-organized current transport through low angle grain boundaries in YBa2_2Cu3_3O7δ_{7-\delta} thin films, studied magnetometrically

    Full text link
    The critical current density flowing across low angle grain boundaries in YBa2_2Cu3_3O7δ_{7-\delta} thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO3_3 bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings with or without grain boundaries were obtained from a modified critical state model. For rings containing 5 and 7 degree boundaries, the magnetic response depends strongly on the field history, which arises in large part from self-field effects acting on the grain boundary.Comment: 8 pages, including 7 figure

    The critical current density and the vortex pinning in high quality YBa2Cu3O7-d thin films

    Get PDF
    We have measured the critical current density Jc of high quality c-axis oriented YBa2Cu3O7-d thin films. Measurements were performed for various magnetic field and temperature values, and as a function of the angle q between the c-axis and the applied magnetic field direction. A maximum of the critical current density was obtained when the flux lines are aligned along the CuO planes (q = 90°); another maximum in Jc was also observed when the magnetic field is adjusted parallel to the c-axis. We attribute these effects to different, intrinsic and extrinsic, pinning mechanisms of vortices in the sample.We have measured the critical current density Jc of high quality c-axis oriented YBa2Cu3O7-d thin films. Measurements were performed for various magnetic field and temperature values, and as a function of the angle q between the c-axis and the applied magnetic field direction. A maximum of the critical current density was obtained when the flux lines are aligned along the CuO planes (q = 90°); another maximum in Jc was also observed when the magnetic field is adjusted parallel to the c-axis. We attribute these effects to different, intrinsic and extrinsic, pinning mechanisms of vortices in the sample

    Non linear excess conductivity of Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4+x_{2n+4+x} (n = 1,2), thin films

    Full text link
    The suppression of excess conductivity with electric field is studied for Bi2_2Sr2_2Can1_{n-1}Cun_nO2n+4+x_{2n+4+x} (nn = 1, 2) thin films. A pulse-probe technique is used, which allows for an estimate of the sample temperature. The characteristic electric field for fluctuations suppression is found well below the expected value for all samples. For the n=1n=1 material, a scaling of the excess conductivity with electric field and temperature is obtained, similar to the scaling under strong magnetic field

    Inter- and intragrain currents in bulk melt-grown YBaCuO rings

    Full text link
    A simple contactless method suitable to discern between the intergrain (circular) current, which flows in the thin superconducting ring, and the intragrain current, which does not cross the weakest link, has been proposed. At first, we show that the intergrain current may directly be estimated from the magnetic flux density B(±z0)B(\pm z_0) measured by the Hall sensor positioned in the special points ±z0\pm z_0 above/below the ring center. The experimental and the numerical techniques to determine the value z0z_0 are discussed. Being very promising for characterization of a current flowing across the joints in welded YBaCuO rings (its dependencies on the temperature and the external magnetic field as well as the time dissipation), the approach has been applied to study corresponding properties of the intra- and intergrain currents flowing across the aa-twisted grain boundaries which are frequent in bulk melt-textured YBaCuO samples. We present experimental data related to the flux penetration inside a bore of MT YBaCuO rings both in the non-magnetized, virgin state and during the field reversal. The shielding properties and their dependence on external magnetic fields are also studied. Besides, we consider the flux creep effects and their influence on the current re-distribution during a dwell.Comment: 13 pages, 16 figures (EPS), RevTeX4. In the revised version, corrections to perturbing effects near the weak links are introduced, one more figure is added. lin

    Inter- and Intragranular Effects in Superconducting Compacted Platinum Powders

    Full text link
    Compacted platinum powders exhibit a sharp onset of diamagnetic screening at T1.9T \simeq 1.9 mK in zero magnetic field in all samples investigated. This sharp onset is interpreted in terms of the intragranular transition into the superconducting state. At lower temperatures, the magnetic ac susceptibility strongly depends on the ac field amplitude and reflects the small intergranular critical current density jcj_{c}. This critical current density shows a strong dependence on the packing fraction f of the granular samples. Surprisingly, jcj_{c} increases significantly with decreasing f (jc(B=0,T=0)0.07j_{c}(B=0, T=0) \simeq 0.07 A/cm2^{2} for f = 0.67 and jc(B=0,T=0)0.8j_{c}(B=0, T=0) \simeq 0.8 A/cm2^{2} for f = 0.50). The temperature dependence of jcj_{c} shows strong positive curvature over a wide temperature range for both samples. The phase diagrams of inter- and intragranular superconductivity for different samples indicate that the granular structure might play the key role for an understanding of the origin of superconductivity in the platinum compacts.Comment: 11 pages including 9 figures. To appear in Phys. Rev. B in Nov. 0

    A Global Fireball Observatory

    Get PDF
    The world's meteorite collections contain a very rich picture of what the early Solar System would have been made of, however the lack of spatial context with respect to their parent population for these samples is an issue. The asteroid population is equally as rich in surface mineralogies, and mapping these two populations (meteorites and asteroids) together is a major challenge for planetary science. Directly probing asteroids achieves this at a high cost. Observing meteorite falls and calculating their pre-atmospheric orbit on the other hand, is a cheaper way to approach the problem. The Global Fireball Observatory (GFO) collaboration was established in 2017 and brings together multiple institutions (from Australia, USA, Canada, Morocco, Saudi Arabia, the UK, and Argentina) to maximise the area for fireball observation time and therefore meteorite recoveries. The members have a choice to operate independently, but they can also choose to work in a fully collaborative manner with other GFO partners. This efficient approach leverages the experience gained from the Desert Fireball Network (DFN) pathfinder project in Australia. The state-of-the art technology (DFN camera systems and data reduction) and experience of the support teams is shared between all partners, freeing up time for science investigations and meteorite searching. With all networks combined together, the GFO collaboration already covers 0.6% of the Earth's surface for meteorite recovery as of mid-2019, and aims to reach 2% in the early 2020s. We estimate that after 5 years of operation, the GFO will have observed a fireball from virtually every meteorite type. This combined effort will bring new, fresh, extra-terrestrial material to the labs, yielding new insights about the formation of the Solar System.Comment: Accepted in PSS. 19 pages, 9 figure
    corecore