11 research outputs found

    NODAL Variants Are Associated With a Continuum of Laterality Defects From Simple D-Transposition of the Great Arteries to Heterotaxy

    Get PDF
    BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-β/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G \u3e A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model

    Genotoxicity of cisplatin and carboplatin in cultured human lymphocytes: a comparative study

    No full text
    Cisplatin and carboplatin are integral parts of many antineoplastic management regimens. Both platinum analogues are potent DNA alkylating agents that robustly induce genomic instability and promote apoptosis in tumor cells. Although the mechanism of action of both drugs is similar, cisplatin appears to be more cytotoxic. In this study, the genotoxic potential of cisplatin and carboplatin was compared using chromosomal aberrations (CAs) and sister-chromatid exchange (SCE) assays in cultured human lymphocytes. Results showed that cisplatin and carboplatin induced a significant increase in CAs and SCEs compared to the control group (p0.05). In conclusion, cisplatin was found to be more genotoxic than carboplatin in the SCE assay in cultured human lymphocytes, and that might explain the higher cytotoxicity of cisplatin

    Potential Composite Digenic Contribution of NPC1 and NOD2 Leading to Atypical Lethal Niemann-Pick Type C with Initial Crohn’s Disease-like Presentation: Genotype-Phenotype Correlation Study

    No full text
    Niemann–Pick disease type C (NPC) is an autosomal recessive neurovisceral disease characterized by progressive neurodegeneration with variable involvement of multisystemic abnormalities. Crohn’s disease (CD) is an inflammatory bowel disease (IBD) with a multifactorial etiology influenced by variants in NOD2. Here, we investigated a patient with plausible multisystemic overlapping manifestations of both NPC and CD. Her initial hospitalization was due to a prolonged fever and non-bloody diarrhea. A few months later, she presented with recurrent skin tags and anal fissures. Later, her neurological and pulmonary systems progressively deteriorated, leading to her death at the age of three and a half years. Differential diagnosis of her disease encompassed a battery of clinical testing and genetic investigations. The patient’s clinical diagnosis was inconclusive. Specifically, the histopathological findings were directed towards an IBD disease. Nevertheless, the diagnosis of IBD was not consistent with the patient’s subsequent neurological and pulmonary deterioration. Consequently, we utilized a genetic analysis approach to guide the diagnosis of this vague condition. Our phenotype–genotype association attempts led to the identification of candidate disease-causing variants in both NOD2 and NPC1. In this study, we propose a potential composite digenic impact of these two genes as the underlying molecular etiology. This work lays the foundation for future functional and mechanistic studies to unravel the digenic role of NOD2 and NPC1

    Extending the spectrum of CLRN1‐ and ABCA4‐associated inherited retinal dystrophies caused by novel and recurrent variants using exome sequencing

    No full text
    Abstract Background Inherited retinal dystrophies (IRDs) are characterized by extreme genetic and clinical heterogeneity. There are many genes that are known to cause IRD which makes the identification of the underlying genetic causes quite challenging. And in view of the emergence of therapeutic options, it is essential to combine molecular and clinical data to correctly diagnose IRD patients. In this study, we aimed to identify the disease‐causing variants (DCVs) in four consanguineous Jordanian families with IRDs and describe genotype–phenotype correlations. Methods Exome sequencing (ES) was employed on the proband patients of each family, followed by segregation analysis of candidate variants in affected and unaffected family members by Sanger sequencing. Simulation analysis was done on one novel CLRN1 variant to characterize its effect on mRNA processing. Clinical evaluation included history, slit‐lamp biomicroscopy, and indirect ophthalmoscopy. Results We identified two novel variants in CLRN1 [(c.433+1G>A) and (c.323T>C, p.Leu108Pro)], and two recurrent variants in ABCA4 [(c.1648G>A, p.Gly550Arg) and (c.5460+1G>A)]. Two families with the same DCV were found to have different phenotypes and another family was shown to have sector RP. Moreover, simulation analysis for the CLRN1 splice donor variant (c.433+1G>A) showed that the variant might affect mRNA processing resulting in the formation of an abnormal receptor. Also, a family that was previously diagnosed with nonsyndromic RP was found to have Usher syndrome based on their genetic assessment and audiometry. Conclusion Our findings extend the spectrum of CLRN1‐ and ABCA4‐associated IRDs and describe new phenotypes for these genes. We also highlighted the importance of combining molecular and clinical data to correctly diagnose IRDs and the utility of simulation analysis to predict the effect of splice donor variants on protein formation and function

    NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy

    No full text
    Abstract Background NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-β/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. Methods We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Results Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. Conclusion Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model

    Additional file 1 of NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy

    No full text
    Additional file 1: Table S1. Molecular, Cohort, and Phenotypic information on all cases with NODAL variants. Table S2. Inclusion criteria and description of included patient groups. Table S3. Detailed clinical information for all 33 CHD cases in the study. Table S4. CHD gene list analyzed in our cohort. Table S5. HPO terms used for all CHD cases in the study
    corecore