17 research outputs found

    H-Aquil: a chemically defined cell culture medium for trace metal studies in Vibrios and other marine heterotrophic bacteria

    Get PDF
    A variety of trace metals, including prominently iron (Fe) are necessary for marine microorganisms. Chemically defined medium recipes have been used for several decades to study phytoplankton, but similar methods have not been adopted as widely in studies of marine heterotrophic bacteria. Medium recipes for these organisms frequently include tryptone, casamino acids, as well as yeast and animal extracts. These components introduce unknown concentrations of trace elements and organic compounds, complicating metal speciation. Minimal medium recipes utilizing known carbon and nitrogen sources do exist but often have high background trace metal concentrations. Here we present H-Aquil, a version of the phytoplankton medium Aquil adapted for marine heterotrophic bacteria. This medium consists of artificial seawater supplemented with a carbon source, phosphate, amino acids, and vitamins. As in Aquil, trace metals are controlled using the synthetic chelator EDTA. We also address concerns of EDTA toxicity, showing that concentrations up to 100 µM EDTA do not lead to growth defects in the copiotrophic bacterium Vibrio harveyi or the oligotrophic bacterium Candidatus Pelagibacter ubique HTCC1062, a member of the SAR11 clade. H-Aquil is used successfully to culture species of Vibrio, Phaeobacter, and Silicibacter, as well as several environmental isolates. We report a substantial decrease in growth rate between cultures grown with or without added Fe, making the medium suitable for conducting Fe-limitation studies in a variety of marine heterotrophic bacteria

    H-Aquil: a chemically defined cell culture medium for trace metal studies in Vibrios and other marine heterotrophic bacteria

    Get PDF
    A variety of trace metals, including prominently iron (Fe) are necessary for marine microorganisms. Chemically defined medium recipes have been used for several decades to study phytoplankton, but similar methods have not been adopted as widely in studies of marine heterotrophic bacteria. Medium recipes for these organisms frequently include tryptone, casamino acids, as well as yeast and animal extracts. These components introduce unknown concentrations of trace elements and organic compounds, complicating metal speciation. Minimal medium recipes utilizing known carbon and nitrogen sources do exist but often have high background trace metal concentrations. Here we present H-Aquil, a version of the phytoplankton medium Aquil adapted for marine heterotrophic bacteria. This medium consists of artificial seawater supplemented with a carbon source, phosphate, amino acids, and vitamins. As in Aquil, trace metals are controlled using the synthetic chelator EDTA. We also address concerns of EDTA toxicity, showing that concentrations up to 100 µM EDTA do not lead to growth defects in the copiotrophic bacterium Vibrio harveyi or the oligotrophic bacterium Candidatus Pelagibacter ubique HTCC1062, a member of the SAR11 clade. H-Aquil is used successfully to culture species of Vibrio, Phaeobacter, and Silicibacter, as well as several environmental isolates. We report a substantial decrease in growth rate between cultures grown with or without added Fe, making the medium suitable for conducting Fe-limitation studies in a variety of marine heterotrophic bacteria

    Globally important haptophyte algae use exogenous pyrimidine compounds more efficiently than thiamin

    Get PDF
    Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi. Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 μM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium (1.16 ± 0.18) ☓ 10-6 pmol thiamin cell-1, whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies (2.22 ± 0.07) ☓ 10-7 or (1.58 ± 0.14) ☓ 10-7 pmol thiamin cell-1, respectively were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelago-monas calceolata. Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure. IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model pa-rameterization and highlights interaction networks among ocean microbes. © 2017 Gutowska et al

    Alternatives to vitamin B 1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    Get PDF
    Vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1 -deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests. © 2014 International Society for Microbial Ecology. All rights reserved

    Trace metal uptake and use in soil diazotrophs and marine Vibrios: Alternative nitrogenases, siderophores, and quorum sensing OR Efforts of the very small to acquire the very scarce

    No full text
    The need for living things to obtain trace elements creates a fundamental interaction between Life and Earth. Iron (Fe), and a handful of other metals, are used ubiquitously in biochemistry, yet must be extracted from insoluble minerals. The major biogeochemical cycles occurring at the Earth’s surface are also catalyzed by metalloenzymes. Trace elements therefore form one of the strongest links in the coupling of geologic and biologic processes and their use is key to understanding the co-evolution of Life and Earth. This thesis explores two microbial solutions to the problem of trace metal scarcity: the substitution of different trace elements in enzymes and the production of siderophores or small molecules that aid in trace metal uptake. I use high-throughput sequencing and newly developed isotopic techniques to determine that ‘alternative’ nitrogenases – containing vanadium (V) or Fe-only instead of molybdenum (Mo) – can make substantial (>20%) contributions to nitrogen fixation and nitrogenase diversity in coastal sediments, raising questions about their overall role in nitrogen cycling. My experiments with nitrogen-fixing Azotobacter vinelandii cultures show that the siderophore protochelin is co-regulated by limitation for both Fe and the nitrogenase cofactor Mo. Protochelin complexes Mo, and up-regulation under Mo-limitation is consistent with its long hypothesized role as a molybdophore. Additionally, I report that A. vinelandii can invest > 30% of fixed nitrogen in siderophores and that this nitrogen is isotopically distinct from biomass. Under conditions of iron-limitation siderophore production changes the isotopic composition (δ15N) of A. vinelandii biomass, a result that may help to explain variations in δ15N from laboratory and field studies of diazotrophs. Finally, I investigate the regulation of siderophore production by Fe and quorum sensing (QS, a microbial counting technique that allows bacteria to tailor their gene expression to their cell density). I find that the marine bacterium Vibrio harveyi uses a single gene cluster to produce both strong, cell-bound siderophores as well as weak soluble siderophores and that QS allows V. harveyi to calibrate its siderophore production to its cellular iron uptake capacity. This final chapter highlights ‘biotic’ and ‘abiotic’ controls on siderophore production and the potential importance of microbial interactions in geobiological processes

    The otherness of the oceans

    No full text

    The otherness of the oceans

    No full text
    As scientists discover more about the genomes of marine microorganisms, new views of their physiology and ecosystem networks are opening up, explain Alexandra Z. Worden and Darcy McRose. "Alien Ocean: Anthropological Voyages in Microbial Seas by Stefan Helmreich University of California Press: 2009. 464 pp.

    Keystone metabolites of crop rhizosphere microbiomes

    No full text
    The role of microbes in sustaining agricultural plant growth has great potential consequences for human prosperity. Yet we have an incomplete understanding of the basic function of rhizosphere microbial communities and how they may change under future stresses, let alone how these processes might be harnessed to sustain or improve crop yields. A reductionist approach may aid the generation and testing of hypotheses that can ultimately be translated to agricultural practices. With this in mind, we ask whether some rhizosphere microbial communities might be governed by ‘keystone metabolites’, envisioned here as microbially produced molecules that, through antibiotic and/or growth-promoting properties, may play an outsized role in shaping the development of the community spatiotemporally. To illustrate this point, we use the example of redox-active metabolites, and in particular phenazines, which are produced by many bacteria found in agricultural soils and have well-understood catalytic properties. Phenazines can act as potent antibiotics against a variety of cell types, yet they also can promote the acquisition of essential inorganic nutrients. In this essay, we suggest the ways these metabolites might affect microbial communities and ultimately agricultural productivity in two specific scenarios: firstly, in the biocontrol of beneficial and pathogenic fungi in increasingly arid crop soils and, secondly, through promotion of phosphorus bioavailability and sustainable fertilizer use. We conclude with specific proposals for future research

    Keystone metabolites of crop rhizosphere microbiomes

    No full text
    The role of microbes in sustaining agricultural plant growth has great potential consequences for human prosperity. Yet we have an incomplete understanding of the basic function of rhizosphere microbial communities and how they may change under future stresses, let alone how these processes might be harnessed to sustain or improve crop yields. A reductionist approach may aid the generation and testing of hypotheses that can ultimately be translated to agricultural practices. With this in mind, we ask whether some rhizosphere microbial communities might be governed by ‘keystone metabolites’, envisioned here as microbially produced molecules that, through antibiotic and/or growth-promoting properties, may play an outsized role in shaping the development of the community spatiotemporally. To illustrate this point, we use the example of redox-active metabolites, and in particular phenazines, which are produced by many bacteria found in agricultural soils and have well-understood catalytic properties. Phenazines can act as potent antibiotics against a variety of cell types, yet they also can promote the acquisition of essential inorganic nutrients. In this essay, we suggest the ways these metabolites might affect microbial communities and ultimately agricultural productivity in two specific scenarios: firstly, in the biocontrol of beneficial and pathogenic fungi in increasingly arid crop soils and, secondly, through promotion of phosphorus bioavailability and sustainable fertilizer use. We conclude with specific proposals for future research
    corecore