90 research outputs found

    Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP

    Get PDF
    We present a method of cross-calibrating the polarization angle of a polarimeter using BICEP Galactic observations. \bicep\ was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers observing from the geographic South Pole at 100 and 150 GHz. The BICEP polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7 degrees in absolute polarization orientation. BICEP observed the temperature and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec. = -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to 0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at 100 and 150 GHz, respectively. We also discuss the expected improvement of the BICEP Galactic field observations with forthcoming BICEP2 and Keck observations.Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 201

    End-to-End Modeling of the TDM Readout System for CMB-S4

    Full text link
    The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the Cosmic Microwave Background with unprecedented sensitivity. This will require an order of magnitude increase in the 100 mK detector count, which in turn increases the demands on the readout system. The CMB-S4 readout will use time division multiplexing (TDM), taking advantage of faster switches and amplifiers in order to achieve an increased multiplexing factor. To facilitate the design of the new readout system, we have developed a model that predicts the bandwidth and noise performance of this circuity and its interconnections. This is then used to set requirements on individual components in order to meet the performance necessary for the full system. We present an overview of this model and compare the model results to the performance of both legacy and prototype readout hardware.Comment: This manuscript was submitted to the Journal of Low Temperature Physics as part of the special issue "LTD20", supporting the conference contribution RP-00

    Constraints on axion-like polarization oscillations in the cosmic microwave background with POLARBEAR

    Full text link
    Very light pseudoscalar fields, often referred to as axions, are compelling dark matter candidates and can potentially be detected through their coupling to the electromagnetic field. Recently a novel detection technique using the cosmic microwave background (CMB) was proposed, which relies on the fact that the axion field oscillates at a frequency equal to its mass in appropriate units, leading to a time-dependent birefringence. For appropriate oscillation periods this allows the axion field at the telescope to be detected via the induced sinusoidal oscillation of the CMB linear polarization. We search for this effect in two years of POLARBEAR data. We do not detect a signal, and place a median 95%95 \% upper limit of 0.65∘0.65 ^\circ on the sinusoid amplitude for oscillation frequencies between 0.02 days−10.02\,\text{days}^{-1} and 0.45 days−10.45\,\text{days}^{-1}, which corresponds to axion masses between 9.6×10−22 eV9.6 \times 10^{-22} \, \text{eV} and 2.2×10−20 eV2.2\times 10^{-20} \,\text{eV}. Under the assumptions that 1) the axion constitutes all the dark matter and 2) the axion field amplitude is a Rayleigh-distributed stochastic variable, this translates to a limit on the axion-photon coupling gϕγ<2.4×10−11 GeV−1×(mϕ/10−21 eV)g_{\phi \gamma} < 2.4 \times 10^{-11} \,\text{GeV}^{-1} \times ({m_\phi}/{10^{-21} \, \text{eV}}).Comment: 17 pages, 5 figures, 2 tables. Published in Physical Review

    Astro2020 APC White Paper: The Early Career Perspective on the Coming Decade, Astrophysics Career Paths, and the Decadal Survey Process

    Get PDF
    In response to the need for the Astro2020 Decadal Survey to explicitly engage early career astronomers, the National Academies of Sciences, Engineering, and Medicine hosted the Early Career Astronomer and Astrophysicist Focus Session (ECFS) on October 8-9, 2018 under the auspices of Committee of Astronomy and Astrophysics. The meeting was attended by fifty six pre-tenure faculty, research scientists, postdoctoral scholars, and senior graduate students, as well as eight former decadal survey committee members, who acted as facilitators. The event was designed to educate early career astronomers about the decadal survey process, to solicit their feedback on the role that early career astronomers should play in Astro2020, and to provide a forum for the discussion of a wide range of topics regarding the astrophysics career path. This white paper presents highlights and themes that emerged during two days of discussion. In Section 1, we discuss concerns that emerged regarding the coming decade and the astrophysics career path, as well as specific recommendations from participants regarding how to address them. We have organized these concerns and suggestions into five broad themes. These include (sequentially): (1) adequately training astronomers in the statistical and computational techniques necessary in an era of "big data", (2) responses to the growth of collaborations and telescopes, (3) concerns about the adequacy of graduate and postdoctoral training, (4) the need for improvements in equity and inclusion in astronomy, and (5) smoothing and facilitating transitions between early career stages. Section 2 is focused on ideas regarding the decadal survey itself, including: incorporating early career voices, ensuring diverse input from a variety of stakeholders, and successfully and broadly disseminating the results of the survey

    Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey

    Full text link
    Opening up a new window of millimeter-wave observations that span frequency bands in the range of 30 to 500 GHz, survey half the sky, and are both an order of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10 arcseconds) than currently funded surveys would yield an enormous gain in understanding of both fundamental physics and astrophysics. In particular, such a survey would allow for major advances in measuring the distribution of dark matter and gas on small-scales, and yield needed insight on 1.) dark matter particle properties, 2.) the evolution of gas and galaxies, 3.) new light particle species, 4.) the epoch of inflation, and 5.) the census of bodies orbiting in the outer Solar System.Comment: 5 pages + references; Submitted to the Astro2020 call for science white paper
    • …
    corecore