439 research outputs found

    Nonovershooting linear multivariable state feedback tracking controllers

    Get PDF
    We consider the use of linear multivariable feedback control to achieve a nonover-shooting step response. A method is given for designing an LTI state feedback controller toasymptotically track a constant step reference with no overshoot and arbitrarily small rise time. Results are given for both minimum phase and nonminimum phase multivariable LTI systems

    Immobilization of Rhodococcus Erythropolis as a Potential Treatment for Atherosclerosis

    Get PDF
    Cardiovascular disease is the leading cause of death in the United States and isprimarily due to hypercholesterolemia. The novel approach of combatting atherosclerosis presented in this research entails delivery of microencapsulated Rhodococcus erythropolis immobilized in biodegradable alginate-based microcapsules and utilizing the bacterium\u27s cholesterol oxidase enzyme pathway to degrade cholesterol from intermediate-stage arterial plaque. The bacterial growth medium was optimized using Taguchi design methods to enable growth characterizations hindered by biosurfactant by-product. Methodologies for extraction and quantification of biosurfactant and cholesterol were developed and conducted simultaneous to bacterial growth assessment. Bacteria were encapsulated using atomization (850±50 μm) and inkjet bioprinting (32±5 μm) to study the effects of cell density and capsule miniaturization on the rate of cholesterol degradation. The cholesterol degradation rate was determined to be independent of cell density, and capsule miniaturization led to a near 4-fold increase in cholesterol degradation, thus allowing for 61.8% cholesterol in an intermediate-stage lesion to be degraded

    Teaching about Madrid: A Collaborative Agents-Based Distributed Learning Course

    Get PDF
    Interactive art courses require a huge amount of computational resources to be running on real time. These computational resources are even bigger if the course has been designed as a Virtual Environment with which students can interact. In this paper, we present an initiative that has been develop in a close collaboration between two Spanish Universities: Universidad Politécnica de Madrid and Universidad Rey Juan Carlos with the aim of join two previous research project: a Collaborative Awareness Model for Task-Balancing-Delivery (CAMT) in clusters and the “Teaching about Madrid” course, which provides a cultural interactive background of the capital of Spain

    Optimal Robust Network Design: Formulations and Algorithms for Maximizing Algebraic Connectivity

    Full text link
    This paper focuses on the design of edge-weighted networks, whose robustness is characterized by maximizing algebraic connectivity, or the smallest non-zero eigenvalue of the Laplacian matrix. This problem is motivated by the application of cooperative localization for accurately estimating positions of autonomous vehicles by choosing a set of relative position measurements and establishing associated communication links. We also examine an associated problem where every robot is limited by payload, budget, and communication to pick no more than a specified number of relative position measurements. The basic underlying formulation for these problems is nonlinear and is known to be NP-hard. We solve this network design problem by formulating it as a mixed-integer semi-definite program (MISDP) and reformulating it into a mixed-integer linear program to obtain optimal solutions using cutting plane algorithms. We propose a novel upper-bounding algorithm based on the hierarchy of principal minor characterization of positive semi-definite matrices. We further discuss a degree-constrained lower bounding formulation, inspired by robust network structures. In addition, we propose a maximum-cost heuristic with low computational complexity to find high-quality feasible solutions. We show extensive computational results corroborating our proposed methods
    • …
    corecore