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Abstract: We consider the use of linear multivariable feedback control to achieve a nonover-
shooting step response. A method is given for designing an LTI state feedback controller to
asymptotically track a constant step reference with no overshoot and arbitrarily small rise time.
Results are given for both minimum phase and nonminimum phase multivariable LTI systems.

1. INTRODUCTION

The problem of obtaining a linear feedback controller for a
linear time invariant (LTI) plant to ensure the tracking re-
sponse to a step input converges to a desired step reference
without overshoot has received some attention recently.
For continuous time systems, Darbha and Bhattacharyya
(2003) gave a two parameter linear feedback controller to
render the step response nonovershooting. Bement and
Jayasuriya (2004) gave an eigenstructure assignment
method to obtain a nonovershooting linear state feedback
controller for plants with one nonminimum phase (right
hand complex plane) zero. Darbha (2003) gave conditions
for the existence of a linear controller to achieve a sign
invariant impulse response, and hence also a nonovershoot-
ing step response. Corresponding conditions for discrete
systems were given in Darbha and Bhattacharyya (2002).
Recently Krstic and Bement (2006) considered strict feed-
back nonlinear systems and used a backstepping approach
to convert the system to an nonovershooting linear system.

A common feature of all these papers is that they con-
sidered single input single output (SISO) systems, and
that the system state was assumed to be initially at rest.
In this paper we consider multiple input multiple output
(MIMO) systems, and use linear state feedback control to
design a nonovershooting controller for a step reference.
We will show that for a minimum phase MIMO system, a
linear state feedback controller can be obtained to asymp-
totically track a step reference with no overshoot, from
all initial conditions. The controller can be readily chosen
to achieve any desired convergence rate (settling time).
For nonminimum phase MIMO systems we design a state
feedback controller and give a set of initial conditions from
which the tracking controller will achieve guaranteed no
overshoot. The design methods make use of the combined
eigenvalue and eigenvector placement methods given in
Moore (1976).

2. PROBLEM FORMULATION

We consider the multi-input multi-output (MIMO) con-
tinuous time system Σ characterized by

Σ :

{

ẋ(t) = Ax(t) +B u(t), x(0) = x0 ∈ R
n

y(t) = C x(t),
(1)

where, for all t ≥ 0, x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp,
are respectively the state, the control input, and the out-
put of the system; A, B, and C are appropriate dimen-
sional constant matrices with rank(B) = m, rank(C) = p,
and p ≤ m. In this paper we make the following standing
assumptions:

Assumption 2.1. The system Σ is right-invertible, stabi-
lizable and has no invariant zeros at the origin.

The following method for designing a tracking controller
for a constant step reference r ∈ R

p is standard: choose a
feedback gain matrix F such that A − BF is a stability
matrix (all eigenvalues lie in the left hand complex plane
(LHP)). By virtue of Assumption 2.1, two vectors xss and
uss always exist satisfying

0 =Axss +B uss (2)

r=C xss (3)

for any r ∈ Rp. If Σ is also left invertible, the solutions xss

and uss satisfying (2)-(3) are uniquely given by
[

xss

uss

]

=

[

A B
C 0

]−1 [
0
r

]

. (4)

Applying the state feedback control law

u = F (xss − x) + uss (5)

to (1) yields the closed loop system

Σcl :

{

ẋ(t) = (A−BF )x(t)+B(uss+Fxss), x(0) = x0

y(t) = C x(t),
(6)

which is equivalent, up to the changes of variable ξ := xss−
x, to the homogeneous system

Σhom :

{

ξ̇(t) = (A−B F ) ξ(t), ξ(0) = xss − x0

y(t) = −C ξ(t) + r.
(7)

Since A−B F is stable, it follows that x converges to xss

and y(t) converges to r asymptotically as t goes to infinity.

The tracking problem we address in this paper is how to
choose the gain matrix F such that the output y tracks
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the step reference r without overshoot. We formally define
the nonovershooting property as follows:

Definition 2.1. Let r ∈ Rp be a constant tracking refer-
ence. The system Σ has a nonovershooting response for r
from the initial condition x0 ∈ Rn if the output y of (1)
arising from x0 yields a tracking error ε(t) = r− y(t) that
satisfies

(1) ε(t) → 0 as t → ∞, and

(2) ε(t) has no changes of sign in any component, i.e., for
each i ∈ {1, . . . , p}, sgn(εi(t)) is constant for all t ≥ 0.

3. DESIGN OF NON-OVERSHOOTING FEEDBACK
CONTROLLERS

Firstly we consider how to obtain a nonovershooting
control law for systems subject to the following assumption
(in addition to Assumption 2.1):

Assumption 3.1. Σ is a left invertible system.

Thus Σ is invertible and square (m = p). A key result
in the design of our nonovershootng controller will be
the results on simultaneous eigenvalue and eigenvector
assignment given in the classical paper Moore (1976),
which we summarize as follows.

Lemma 1. Let L = {λ1, . . . , λn} be a self conjugate set of
n distinct complex numbers. Let S = {s1, . . . , sn} ⊂ Rp be
a set of n (not necessarily distinct) vectors in Rp. Assume
for 1 ≤ i ≤ n, the matrix equation

[

λiI −A −B
C 0

] [

vi
wi

]

=

[

0
si

]

(8)

has solutions sets V = {v1, . . . , vn} ⊂ Cn and W =
{w1, . . . , wn} ⊂ Cp. Then provided the set V is a linearly
independent subset of Cn, there exists a unique real
feedback matrix F such that, for all i ∈ {1, . . . , n},

(A−BF )vi = λivi (9)

Proof: The sets L and V satisfy the assumptions of Propo-
sition 1 of Moore (1976), and hence the results of that
paper may be used to construct a feedback matrix F to
satisfy (9). ✷

Our first method for designing nonovershooting controllers
will apply to systems that satisfy (in addition to Assump-
tions 2.1 and 3.1)

Assumption 3.2. Σ has n− p distinct LHP zeros.

A necessary and sufficient condition for Assumption 3.2 is
that Σ is of minimum phase and det(CB) 6= 0, Maciejowski
(1989). The design method for our nonovershooting control
law is as follows. Let L = {λ1, . . . , λn} ⊂ C be the
distinct LHP eigenvalues of A − BF to be chosen. Let
{zi : i ∈ {1, . . . , n − p}} ⊂ C be the n − p distinct zeros
of Σ. Then we choose λi = zi for i ∈ {1, . . . , n − p};
these modes are stable as the zi all lie in the LHP by
assumption. By Lemma 7, if Σ has any uncontrollable
stable modes these will also be invariant zeros and will
be included among the λi for i ∈ {1, . . . , n − p}. For
i ∈ {n− p+1, . . . , n}, the λi < 0 may be freely chosen to
be any real distinct stable modes.

Next let {e1, . . . , ep} be the standard basis vectors for Rp,
and let S = {s1, . . . , sn} ⊂ Rp be such that

si =















0 for i ∈ {1, . . . , n− p};
e1 for i = n− p+ 1;
...
ep for i = n.

(10)

Let PΣ(s) :=
[

s I−A −B

C 0

]

be the system matrix pencil.

Since Σ is invertible, the rank of PΣ(s) is n + p if and
only if s ∈ C is not an invariant zero of Σ. Since {λi : i ∈
{1, . . . , n − p}} are the distinct zeros of Σ, the kernels
of PΣ(λi) for all i ∈ {1, . . . , n − p} are 1-dimensional
subspaces of Cn+p, while ker PΣ(λi) = {0} for all i ∈ {n−
p + 1, . . . , n}. Solving (8) for the vectors in S, we obtain
V = {v1, . . . , vn} ⊂ Cn and W = {w1, . . . , wn} ⊂ Cp given
by

[

vi
wi

]

=







ker PΣ(λi) for i ∈ {1, . . . , n− p},

P−1
Σ (λi)

[

0

ei−(n−p)

]

for i ∈ {n− p+ 1, . . . , n}.

Thus the vectors in V satisfy si = Cvi for all i ∈ {1, . . . , n}.
Then provided V is linearly independent, by Lemma 1,
the procedure in Moore (1976) can then be applied
to obtain F such that A − BF has distinct eigenvalues
and corresponding linearly independent eigenvectors given
by L and V respectively. Now Theorem 2 says that the
feedback gain matrix F can be used to obtain a state
feedback control law that will yield a closed loop system
response that will converge to any given step reference r
without overshoot, from all initial conditions.

Theorem 2. Assume that Σ satisfies Assumption 2.1, 3.1
and 3.2, and F is defined as above. Let r ∈ Rp be any step
reference, and apply u as in (5) to Σ. Then the output y(t)
from Σcl will be non overshooting for all initial conditions
x0 ∈ Rn.

Proof: Applying u as in (5) to Σ and introducing state
coordinates ξ := xss − x yields the homogeneous system
Σhom in (7). For any initial condition ξ0 ∈ Rn, the tracking
error ε(t) = C ξ(t) is given by

ε(t) = C e(A−B F ) t ξ0.

As the eigenvectors in V are linearly independent, the
matrix V := [ v1 v2 . . . vn ] is invertible. Introduce
α := [α1 α2 . . . αn]

⊤ = V −1ξ0. It follows that the tracking
error can be expressed by

ε(t) =

n
∑

i=1

C vi αi e
λi t =

n
∑

i=n−p+1

ei−(n−p) αi e
λi t. (11)

As the eigenvalues all lie in the LHP, the system Σhom is
asymptotically stable, and ε(t) = C ξ(t) → 0. As the ei
vectors are orthogonal, each component of ε(t) contains
exactly one mode. Hence ε(t) cannot change sign in any
component, and y(t) converges to r without overshoot. ✷

Remark 3.1. For any given choice of L and S, it is not
assured that the vectors in V obtained from solving (8) will
be linearly independent. If the vectors in {v1, . . . , vn−p} are
linearly dependent, then it will not be possible to obtain a
suitable F . However if the vectors in V up to {v1, . . . , vn−p}
are independent, but independence of V fails due to the
vectors vi for 1 ∈ {n − p + 1, . . . , n}, there are then p!
possible ways to re-order the p standard basis vectors in S
and resolve (8) to obtain a new V . If this procedure failed
to obtain a linearly independent V , we could alter one of

2



the eigenvalues in L, for 1 ∈ {n − p + 1, n}, and again
solve (8).

Remark 3.2. As the λi for 1 ∈ {n − p + 1, . . . , n} can
be freely chosen to be any distinct LHP real numbers
(provided they are distinct from the stable zeros of Σ, and
provided also that the resulting V is linearly independent),
the rate of convergence of the output trajectory to the
target reference can be chosen to be arbitrarily fast. Note
also that F is independent of both r and x0. Hence
the same F can be used to achieve nonovershooting
convergence for any r ∈ Rp and any x0 ∈ Rn. The values
of r and x0 enter the control law u only through the values
of xss and uss.

The main limitation of Theorem 2 is that it requires Σ to
have n − p LHP zeros, and many systems of interest will
not satisfy this requirement. Our next theorem shows that
we can replace Assumption 3.2 with

Assumption 3.3. The system Σ has at least n−2p distinct
LHP zeros.

Note that a system satisfying Assumption 3.3 may be
nonminimum phase with up to p zeros in the RHP. The
design method for F is as follows.

Let L = {λ1, . . . , λn} be the distinct stable eigenvalues
of A − B F to be chosen. Let z1, . . . , zn−2p be the n −
2p distinct invariant LHP zeros of Σ. Mimicking the
procedure for Theorem 2, we choose λi = zi for i ∈
{1, . . . , n − 2p}, and for i ∈ {n − 2p + 1, . . . , n} the λi

may be freely chosen to be any distinct real stable modes.

Next let S = {s1, . . . , sn} ⊂ Rp be such that

si =























0 for i ∈ {1, . . . , n− 2 p};
e1 for i ∈ {n− 2 p+ 1, n− 2 p+ 2};
e2 for i ∈ {n− 2 p+ 3, n− 2 p+ 4};
...
ep for i ∈ {n− 1, n}.

(12)

where {e1, . . . , ep} is the standard basis for Rp. Solving (8)
for the vectors in S, we obtain V = {v1, . . . , vn} ⊂ Cn and
W = {w1, . . . , wn} ⊂ Cp given by

[

vi
wi

]

=







ker PΣ(λi) for all i ∈ {1, . . . , n− 2p},

P−1
Σ (λi)

[

0

si

]

for all i ∈ {n− 2p+ 1, . . . , n}.

(13)
Then provided V is linearly independent, by Lemma 1,
the procedure in Moore (1976) can then be applied to
obtain F such that A − BF has distinct eigenvalues and
corresponding linearly independent eigenvectors given by
L and V respectively. The vectors in V satisfy si = Cvi
for all i ∈ {1, . . . , n}. To simplify the notation, in the
following we will use, for each k ∈ {1, . . . , p}, vk,1 and
vk,2 to denote be the eigenvectors in V associated with
standard basis vector ek in (13). Thus for example v1,1 =
vn−2p+1 and v1,2 = vn−2p+2 because they are associated
with e1 = sn−2p+1 = sn−2p+2; likewise vp,1 = vn−1

and vp,2 = vn because they are associated with ep =
sn−1 = sn. We will also use λk,1 and λk,2 to denote
the corresponding eigenvalues. We assume without loss of
generality that for each k ∈ {1, . . . , p}, the eigenvalues are
ordered increasingly, e.g. λk,1 < λk,2.

Theorem 3 then gives a set of initial conditions from which,
for given r ∈ Rp, the closed loop system Σcl will yield a
nonovershooting step response.

Theorem 3. Assume that the system Σ satisfies Assump-
tion 3.3, and that F has been designed as above. For each
k ∈ {1, . . . , p}, let Hk = span{vk,1, vk,2} and let Jk ⊆ Hk

be the region

Jk := {γk,1 vk,1 + γk,2 (vk,1 − vk,2) : γk,1 · γk,2 ≤ 0} (14)

For any x ∈ Rn, let xk denote the orthogonal projection of
x onto Hk. Let J ⊆ Rn consist of those points in x ∈ Rn

for which xk ∈ Jk for all k ∈ {1, . . . , p}.

Let r ∈ R
p be given and let x0 ∈ R

n be an initial condition.
The closed loop system Σcl obtained from applying u in
(5) to Σ will be nonovershooting for x0 if and only if
xss − x0 ∈ J .

Proof Introduce new state coordinates ξ = xss − x and
assume ξ0 = ξ(0) ∈ J . Introduce α := [α1 α2 . . . αn]

⊤ =
V −1ξ0. From the proof of Theorem 2, it follows that the
tracking error can be expressed by

ε(t) =

n
∑

i=n−2p+1

ei−(n−p) αi e
λi t. (15)

As the eigenvalues all lie in the LHP, the system Σhom is
asymptotically stable, and ε(t) = C ξ(t) → 0. To see that
y(t) does not overshoot, note that ξ0 may be expressed as

ξ0 =

n−2 p
∑

i=1

αi vi +

p
∑

k=1

(

αk,1 vk,1 + αk,2 vk,2

)

, (16)

and hence ξ0k , the projection of ξ0 onto Hk, is

ξ0k = αk,1 vk,1 + αk,2 vk,2. (17)

From (15)

ε(t) =

p
∑

k=1

ek (αk,1 e
λk,1t + αk,2 e

λk,2t). (18)

Since the ek are orthogonal, we see that ε(t) will not
change sign if and only if, for every k ∈ {1, . . . , p},

εk(t) := αk,1 e
λk,1t + αk,2 e

λk,2t (19)

does not change sign for t ≥ 0. By assumption, since each
ξ0k ∈ Jk, we have γk,1 and γk,2 such that

ξ0k = γk,1 vk,1 + γk,2 (vk,1 − vk,2) (20)

and γk,1 · γk,2 ≤ 0. Comparing (17) and (20), we have

(αk,1, αk,2) = (γk,1 + γk,2,−γk,2). (21)

By assumption λk,1 < λk,2 < 0. So by Lemma 6, each εk(t)
does not change sign for t ≥ 0. Thus ε(t) → 0 without
changing sign, and hence y → r without overshoot. ✷.

Remark 3.3. In applying Theorem 3 to see if Σcl is
nonovershooting for a given x0 ∈ Rn, we may construct
the matrix

P = [ v1 | . . . | vn−2 p | v1,1 | v1,1−v1,2 | . . . | vp,1 | vp,1−vp,2 ],
(22)

then calculate γ = [ γ1 . . . γn−2 p γ1,1 γ1,2 . . . γp,1 γp,2 ]
⊤

where
γ = P−1(xss − x0) (23)

and check if γk,1γk,2 ≤ 0 for all k ∈ {1, . . . , p}. In
particular, to see if the step response from the initial
condition x0 = 0 is nonovershooting for a given step
reference r, we check whether xss ∈ J .
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4. RELAXING THE LEFT-INVERTIBILITY
ASSUMPTION

Next we see how Assumption 3.1 can be relaxed, so that
our design method may be applied to systems that are not
left invertible.

To deal with non left-invertible systems, we recall Lemma 4
from Ntogramatzidis and Prattichizzo (2007). This
Lemma gives feedback matrices Φ and Ω that can trans-
form a non left-invertible system Σ into a left-invertible

square system Σ̂, whose invariant zeros include those of
the original system Σ, plus a set of values that can be
chosen to lie in the LHP.

Before presenting Lemma 4, we need to recall some pre-
liminary definitions and results (for details we refer to
Basile and Marro (1992)). Let V⋆ be the largest (A,B)-
controlled invariant subspace contained in ker C. Recall
that the feedback matrices Φ such that (A+B Φ)V⋆ ⊆ V⋆

are called friends of V⋆. Dually, S⋆ is the smallest (A,C)-
conditioned invariant subspace containing imB. The sub-
space R⋆ = V⋆ ∩ S⋆ denotes the reachability subspace on
V⋆. The eigenvalues of (A + B Φ) restricted to V⋆, i.e. in
σ(A +B Φ | V⋆), are split into two sets: the eigenvalues of
(A + B Φ | R⋆) are assignable by a suitable choice of the

friend Φ. The eigenvalues in Γint , σ (A+B Φ | V⋆/R⋆) are
fixed for all the choices of the friend Φ; if Γint ⊂ C−, the
subspace V⋆ is said to be internally stabilizable. Similarly,
by denoting with R0 the reachable subspace from the
origin, the eigenvalues σ(A + B Φ |Rn/V⋆) are split into
two sets: the eigenvalues of (A + B Φ | V⋆+R0/V

⋆) are
assignable by a suitable choice of the friend Φ, whereas the
eigenvalues in Γext , σ(A + B Φ |Rn/V⋆+R0) are fixed.
If Γext ⊂ C−, V

⋆ is said to be externally stabilizable. The
elements of Γint are the invariant zeros of Σ.

Lemma 4. (Squaring Down Algorithm) Ntogramatzidis
and Prattichizzo (2007)

Let Φ be a friend of V⋆, i.e., (A + B Φ)V⋆ ⊆ V⋆, which
assigns all the internal assignable poles of V⋆ in the LHP,
i.e., σ(A + B Φ | R⋆) ⊂ C−, where R⋆ is the reachable
subspace on V⋆. Let Ω be a basis matrix of the subspace
(B−1 V⋆)⊥ of the input space Rm. The system Σ̂ described
by the triple (A+B Φ, B Ω, C) is such that

• Σ̂ is a left and right invertible square system with p
inputs and outputs;

• The invariant zeros of Σ̂ are the union of those of Σ
and the internal poles of V⋆ assigned through Φ; they
may be chosen to lie in the LHP.

Denote Â = A + BΦ and B̂ = BΩ; then Σ̂ can be
represented by the triple (Â, B̂, C). If Σ is such that

dim(V⋆) = n− p, then Σ̂ will be left and right-invertible,
stabilizable, with no invariant zeros at the origin and n−p

LHP zeroes. Hence Σ̂ satisfies Assumptions 2.1, 3.1 and
3.2, and we can design the feedback gain matrix F̂ for Σ̂
by Theorem 2 and generalize as follows.

Theorem 5. Assume Σ is such that the dimension of V⋆ is
n− p. Let Σ̂, Ω, Φ and F̂ be as above. Computing

[

x̂ss

ûss

]

=

[

Â B̂
C 0

]−1 [
0
r

]

, (24)

and applying the control law

u = ΩF̂ (x̂ss − x) + Φx+Ωûss (25)

to Σ yields x → x̂ss and y → r without overshoot.

Proof: Applying (25) to (1) yields the closed loop system

Σ̂cl :

{

ẋ(t)=(Â−B̂F̂ )x(t)+B̂(ûss+F̂ x̂ss), x(0) = x0

y(t)=C x(t),
(26)

As F̂ was defined with respect to Σ̂, by Theorem 2, we
have x → x̂ss and y → r without overshoot. ✷

Remark 4.1. A necessary and sufficient condition for
dim(V⋆) = n− p is A ker C ⊆ ker C + imB.

Remark 4.2. If Σ satisfies Assumption 2.1 and is such that
dim(V⋆) ≥ n−2p, then Σ̂ will satisfy Assumptions 2.1, 3.1

and 3.3. Hence we can design the feedback gain matrix F̂
for Σ̂ as in Theorem 3 and generalize Theorem 3 to the
case where dim(V⋆) ≥ n− 2p.

5. EXAMPLES

Example 1: Consider the MIMO system Σ1 with

A =







1 0 −2 4
3 −3 0 1
1 2 0 1
−1 2 −4 5






, B =







0 0
0 0
1 0
0 1






, C =

[

0 2 1 3
1 −2 3 2

]

.

Assume that the tracking target is r = [ 3, −3 ]T . We see
that the system has two invariant zeroes at −0.857±3.543 i
and open loop poles at 3.260 ± 2.305i, −2.803, −0.716.
Hence the system is minimum phase and square with
m = p = 2 and is open loop unstable.

Following the above design procedure, we choose closed
loop poles of λ1 = −0.857 + 3.543 i, λ2 = λ̄1 to include
the LHP zeroes. The remaining closed loop poles may
be chosen arbitrarily; we will choose λ3 = −2.8 and
λ4 = −0.7, since control effort is generally minimized by
reducing the movement of stable open loop poles.

Applying the Moore (1976) algorithm, we obtain corre-
sponding closed loop eigenvectors

v1 = [ 0.147 0.065 − 0.070 i 0.030 − 0.100 i − 0.053 +
0.080 i ]T , v2 = v̄1, v3 = [−0.007 0.303 0.150 0.082 ]T

and v4 = [−0.307, −0.321, 0.101, 0.181 ]T , which are
chosen to satisfy C v1 = C v2 = [ 0 0 ]T , C v3 = [ 1 0 ]T

and C v4 = [ 0 1 ]T . The feedback gain matrix F is

F =

[

−2.557 4.086 −0.757 −0.514
2.186 1.171 −2.814 8.971

]

. (27)

The system responses are shown in Figure 1 for several
values of the initial condition x0. In each case we see that
both components of the output trajectory converge to their
target value without overshoot.

If we wish to increase the convergence speed, then we
may instead choose larger negative eigenvalues λ3 = −4,
λ4 = −5. In this case F is

F =

[

−0.7143 −0.2857 4.4286 2.1429
1.5714 3.4286 −4.1429 9.2857

]

. (28)

Several output trajectories are shown in Figure 2.
4
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Fig. 2. Minimum phase MIMO system Σ1.

Example 2: Consider the MIMO system (m = 3, p = 2)
Σ2 with

A =







0 6 0 −4
0 1 0 0
6 0 0 2
0 10 3 −7






, B =







4 7 0
−3 0 0
3 0 −10
0 0 0






, CT =







0 −5
−3 0
0 9
6 −7






.

Assume that the tracking target is r = [ 1 − 2 ]T .
We see that the system has no invariant zeroes. The
system is right invertible but not left invertible. Also
V⋆ = span{[ 454 − 70 225 − 35 ]T , [ 0 18 7 9 ]T} has
dimension 2 = n− p, so we may apply the squaring down
algorithm in Lemma 4 to Σ2. Choosing the assignable
internal eigenvalues of V⋆ at z1 = −1, z2 = −2 gives

Φ =

[

−0.1728 −5.7527 −1.6890 3.2635
−0.3403 −7.2990 −2.9589 −3.0499
0.5935 1.2996 1.0118 2.1916

]

, (29)

Ω =

[

−1 0
0 7
0 18

]

(30)

with squared down system Σ̂ with

Â=







−3.0734 −68.1037 −27.4678 −12.2954
0.5184 18.2581 5.0669 −9.7904
−0.4530 −30.2541 −15.1846 −10.1259

0 10.0000 3.0000 −7.0000






, (31)

B̂ =







−4.0000 2.5371
3.0000 0
−3.0000 −9.3200

0 0






, Ĉ = C, (32)

which is left and right invertible with zeros at z1 = −1,
z2 = −2, as chosen. Hence Σ̂ has n−p = 2 LHP zeros and
we may apply the algorithm in Theorem 3. The closed loop
poles are chosen to include the zeros λ1 = −1, λ2 = −2,
and we arbitrarily choose λ3 = −3, λ4 = −4. We obtain
the feedback gain matrix

F̂ =

[

0.1728 0.4194 −0.3110 −0.5968
0.0777 −0.0121 −0.1398 0.1329

]

. (33)

Several output trajectories are shown in Figure 3.
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Fig. 3. Non square minimum phase system Σ2.

Example 3: Here we consider the SISO (m = p = 1)
nonminimum phase system Σ3 with

A =







0 1 0 0
0 0 1 0
0 0 0 1
0 −5 −9 −5






, B =







0
0
0
1






, C = [ 15 −7 −7 1 ] ,

which was discussed in Bement and Jayasuriya (2004).
The authors used an eigenvalue assignment method to
obtain a state feedback controller that would track a
target reference of r = 1 from an initial condition of
x0 = [ 0 0 0 0 ]T without overshoot.

The poles and zeros of Σ3 are {0, −1,−2 ± i} and
{1, −3, −5} respectively. Hence Σ2 has n − 2p = 2
LHP zeros, and we may use the Theorem 3 to design a
nonovershooting controller. We choose closed loop eigen-
values λ1 = −5, λ2 = −3, λ3 = −2, λ4 = −1. Applying
the algorithm in Moore (1976) gives a state feedback gain
matrix of F = [ 30 56 32 6 ] with closed loop eigenvectors

v1 = [ 0.0078 0.0349 0.1111 0.0625 ]T ,

v2 = [−0.0392 − 0.1048 − 0.2222 − 0.0625 ]T ,

v3 = v1,1 = [ 0.1960 0.3143 0.4444 0.0625 ]T ,
5



v4 = v1,2 = [−0.9798 −0.9429 −0.8889 −0.0625 ]T , and
hence

L1 = {γ1,1v1,1 + γ1,2(v1,1 − v1,2) : γ1,1γ1,2 ≤ 0} (34)

Solving (4) for Σ3 gives xss = [ 1/15 0 0 0 ]T . To see if
Σcl is non overshooting for x0 = 0, we apply the test in
Remark 3.3 and obtain

γ = [v1 | v2 | v1,1 | v1,1 − v1,2]
−1(xss − x0)

=







−0.0078 0.0349 0.1111 0.0486
0.0392 −0.1048 −0.2222 −0.1597
−0.1960 0.3143 0.4444 0.3819
0.9798 −0.9429 −0.8889 −0.8264













1/15
0
0
0







= [−0.0005 0.0026 − 0.0131 0.0653 ]T . (35)

Since the product of the last two coefficients is negative, we
see that the system response will be non overshooting for
x0 = 0. The output y(t) is plotted in Figure 4. Note that
the trajectory exhibits undershoot, as expected for systems
with a zero on the positive real axis Darbha (2003).
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Fig. 4. Nonminimum phase SISO system Σ3.

Some key features of the above method, in comparison
with Bement and Jayasuriya (2004) are

(1) Both methods apply to systems Σ with n − 2 LHP
zeroes. However, for Bement and Jayasuriya (2004)
the LHP zeroes must be real; in our method these are
permitted to be complex.

(2) The Bement and Jayasuriya (2004) algorithm yields
a non-overshooting controller from zero initial con-
ditions. The above algorithm identifies a set of ini-
tial conditions from which the controller will give a
nonovershooting response. To ensure that x0 = 0, or
any other desired initial condition, will yield a non-
overshooting response, we must select the eigenvalues
λ3 and λ4 such that x0 satisfies the test in Remark
3.3.

(3) The Bement and Jayasuriya (2004) algorithm re-
quires careful hand tuning from the controller de-
signer to choose appropriate eigenvalues. Conversely,
the Moore (1976) algorithm can readily be executed
in MATLAB and the only design decision is the selec-
tion of the eigenvalues λ3 and λ4. These may be tuned
to achieve faster/slower convergence with correspond-

ing stronger/weaker control effort, as required to meet
any desired convergence rate or actuator constraints.

6. CONCLUSION

A design method for an LTI state feedback tracking
controller to achieve a nonovershooting step response has
been introduced. To the best of the author’s knowledge,
this is the first such control scheme to consider MIMO
systems, and non-zero initial conditions.
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8. APPENDIX

Lemma 6. Let λ1 < λ2 < 0 and let

y(t) = α1e
λ1t + α2e

λ2t (36)

Then y(t) will not change sign for any t ≥ 0 if and only if

(α1, α2) = (γ1 + γ2,−γ2) (37)

for some real numbers γ1, γ2 with γ1γ2 ≤ 0.

Lemma 7. If the system Σ is right-invertible, every uncon-
trollable eigenvalue of Σ is also an invariant zero of Σ.
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