11 research outputs found
Adsorption of hydrogen on the surface and sub-surface of Cu(111)
The interaction of atomic hydrogen with the Cu(111) surface was studied by a combined experimental-theoretical approach, using infrared reflection absorption spectroscopy, temperature programmed desorption, and density functional theory (DFT). Adsorption of atomic hydrogen at 160 K is characterized by an anti-absorption mode at 754 cm−1 and a broadband absorption in the IRRA spectra, related to adsorption of hydrogen on three-fold hollow surface sites and sub-surface sites, and the appearance of a sharp vibrational band at 1151 cm−1 at high coverage, which is also associated with hydrogen adsorption on the surface. Annealing the hydrogen covered surface up to 200 K results in the disappearance of this vibrational band. Thermal desorption is characterized by a single feature at ∼295 K, with the leading edge at ~250 K. The disappearance of the sharp Cu-H vibrational band suggests that with increasing temperature the surface hydrogen migrates to sub-surface sites prior to desorption from the surface. The presence of sub-surface hydrogen after annealing to 200 K is further demonstrated by using CO as a surface probe. Changes in the Cu-H vibration intensity are observed when cooling the adsorbed hydrogen at 180 K to 110 K, implying the migration of hydrogen. DFT calculations show that the most stable position for hydrogen adsorption on Cu(111) is on hollow surface sites, but that hydrogen can be trapped in the second sub-surface layer.Fil: Mudiyanselage, Kumudu. Brookhaven National Laboratory; Estados UnidosFil: Yang, Yixiong. State University Of New York; Estados UnidosFil: Hoffmann, Friedrich M.. City University Of New York; Estados UnidosFil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico San Luis. Instituto de FÃsica Aplicada; ArgentinaFil: Hrbek, Jan. Brookhaven National Laboratory; Estados UnidosFil: White, Michael G.. Brookhaven National Laboratory; Estados UnidosFil: Liu, Ping. Brookhaven National Laboratory; Estados UnidosFil: Stacchiola, Dario Jose. Brookhaven National Laboratory; Estados Unido
Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 Interface
Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.U.S. Department of Energy DE-AC02- 98CH10886, DE-AC02-05CH11231Brookhaven National Laboratory DE-SC001270
Stabilization of Carboxylate Surface Species on Pd(111)
The stabilization of formate and acetate surface species on Pd(111) has been studied by temperature-programmed desorption and infrared reflection absorption spectroscopy (IRRAS). In addition to the previously reported stabilization of carboxylate species by the pre-adsorption of oxygen, an even bigger stabilizing effect was observed upon the adsorption of carbon monoxide onto formate- and acetate-covered surfaces. The presence of carbon monoxide delays the decomposition of carboxylate species by blocking surrounding sites. Proper use of co-adsorbed species could help to improve selectivity or activity in heterogeneous catalytic reactions
An Infrared Spectroscopic and Temperature-Programmed Desorption Study of 1,1-Difluoroethylene on Clean and Hydrogen-Covered Pd(111)
The surface chemistry of 1,1-difluoroethylene was studied on clean and hydrogen-covered Pd(111) using a combination of temperature-programmed desorption and reflection absorption infrared spectroscopy (RAIRS) to explore whether the larger infrared absorbance of 1,1-difluoroethylene than ethylene may be used to examine reactions under realistic catalytic conditions using RAIRS. It was found that the chemistry of 1,1-difluoroethylene on Pd(111) surfaces is similar to that of ethylene with bonding occurring in both the π- and di-σ-forms. However, due to the presence of C–F bonds in the molecule, the infrared absorbances for 1,1-difluoroethylene were much larger than those for ethylene. This provides the potential for using RAIRS for in situ studies of catalytic reactions that involve alkenes
Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H-2 production
Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H-2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.Postprint (author's final draft
Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H-2 production
Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H-2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity