44 research outputs found

    Finding new points of influence: Rethinking how we understand policy

    Get PDF

    Caractérisation des modes coutumiers de gestion locale de l’eau dans le bassin de la Bougouriba 7

    Get PDF

    First WP4 Workshop report in Zebilla

    Get PDF

    TAI Project - WP4 Workshops report

    Get PDF

    Magnetic properties of the three-dimensional Hubbard model at half filling

    Full text link
    We study the magnetic properties of the 3d Hubbard model at half-filling in the TPSC formalism, previously developed for the 2d model. We focus on the N\'eel transition approached from the disordered side and on the paramagnetic phase. We find a very good quantitative agreement with Dynamical Mean-Field results for the isotropic 3d model. Calculations on finite size lattices also provide satisfactory comparisons with Monte Carlo results up to the intermediate coupling regime. We point out a qualitative difference between the isotropic 3d case, and the 2d or anisotropic 3d cases for the double occupation factor. Even for this local correlation function, 2d or anisotropic 3d cases are out of reach of DMF: this comes from the inability of DMF to account for antiferromagnetic fluctuations, which are crucial.Comment: RevTex, 9 pages +10 figure

    Is there spin-charge separation in the 2D Hubbard and t-J models at low electronic densities?

    Full text link
    The spin and density correlation functions of the two-dimensional Hubbard model at low electronic density are calculated in the ground state by using the power method, and at finite temperatures by using the quantum Monte Carlo technique. Both approaches produce similar results, which are in close agreement with numerical and high temperature expansion results for the two-dimensional t−J{\rm t-J} model. Using perturbative approximations, we show that the examination of the density correlation function alone is not enough to support recent claims in the literature that suggested spin and charge separation in the low electronic density regime of the t−J{\rm t-J} model.Comment: 11 pages, tex, 3 figures upon request, NTHU - preprin

    Report on the main activities undertaken and preliminary findings emerging from research on the CGIAR Targeting Agricultural Innovations and Ecosystem Services in the northern Volta basin (TAI) project

    Get PDF
    The CGIAR Water, Land and Ecosystems research project on Targeting Agricultural Innovations and Ecosystem Services in the northern Volta basin (TAI) is a two year project (2014-2016) led by Bioversity International in collaboration with 11 institutes: CIAT, CIRAD, International Water Management Institute (IWMI), King’s College London (KCL), SNV World Burkina Faso (SNV), Stanford University, Stockholm Resilience Centre (SRC), University of Development Studies Ghana (UDS), University of Minnesota, University of Washington, and the World Agroforestry Institute. We are working with communities across Centre-Est Burkina Faso and Upper-East Ghana to gather empirical data, test research methodologies and co-develop knowledge on solutions to ecosystem service management challenges. Results from the project are still emerging and will continue to do so into 2017 as the team finish analysing the data and writing up their findings. This report presents the main activities accomplished and preliminary headline messages from the first 18 months of the project. Final results from the project will be made available in 2017 on the WLE website

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    Superconducting phase coherence in the presence of a pseudogap: Relation to specific heat, tunneling and vortex core spectroscopies

    Full text link
    In this paper we demonstrate how, using a natural generalization of BCS theory, superconducting phase coherence manifests itself in phase insensitive measurements, when there is a smooth evolution of the excitation gap \Delta from above to below Tc. In this context, we address the underdoped cuprates. Our premise is that just as Fermi liquid theory is failing above Tc, BCS theory is failing below. The order parameter \Delta_{sc} is different from the excitation gap \Delta. Equivalently there is a (pseudo)gap in the excitation spectrum above Tc which is also present in the underlying normal state of the superconducting phase, and can be directly inferred from specific heat and vortex core experiments. At the same time many features of BCS theory, e.g., fermionic quasiparticles below Tc, are clearly present. These observations can be reconciled by a natural extension of BCS theory, which includes finite center-of-mass momentum pair excitations, in addition to the usual fermionic quasiparticles. Applying this theory we find that the Bose condensation of Cooper pairs, which is reflected in \Delta_{sc}, leads to sharp peaks in the spectral function once T≤TcT \le T_c. These are manifested in ARPES spectra as well as in specific heat jumps, which become more like the behavior in a \lambda transition as the pseudogap develops. We end with a discussion of tunneling experiments and condensation energy issues. Comparison between theoretical and experimental plots of C_v, and of tunneling and vortex core spectroscopy measurements is good.Comment: 12 pages, 8 figures, ReVTeX 3.
    corecore