99 research outputs found

    Research on the Origin of Life: Membrane-Assisted Polycondensations of Amino Acids and Peptides

    Get PDF
    The question as to whether and to what extent the phospholipid membrane of liposomes can assist in the polymerization of amino acids and peptides has been investigated. It has been found that the membrane can select hydrophobic amino acids and peptides, thus operating as a selection tool in the polymerization reaction and thus permitting the formation of oligopeptides not possible in water – in the absence of liposomes – as a result of the too low solubility

    Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: low-potential amperometric detection of reduced glutathione.

    Get PDF
    A sensitive electrochemical sensor based on the synergistic effect of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and graphene oxide (GO) for low-potential amperometric detection of reduced glutathione (GSH) in pH 7.2 phosphate buffer solution (PBS) has been reported. This is the first time that the combination of GO and TCNQ have been successfully employed to construct an electrochemical sensor for the detection of glutathione. The surface of the glassy carbon electrode (GCE) was modified by a drop casting using TCNQ and GO. Cyclic voltammetric measurements showed that TCNQ and GO triggered a synergistic effect and exhibited an unexpected electrocatalytic activity towards GSH oxidation, compared to GCE modified with only GO, TCNQ or TCNQ/electrochemically reduced GO. Three oxidation waves for GSH were found at −0.05, 0.1 and 0.5 V, respectively. Amperometric techniques were employed to detect GSH sensitively using a GCE modified with TCNQ/GO at −0.05 V. The electrochemical sensor showed a wide linear range from 0.25 to 124.3 μM and 124.3 μM to 1.67 mM with a limit of detection of 0.15 μM. The electroanalytical sensor was successfully applied towards the detection of GSH in an eye drop solution

    MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in <it>Bombyx mori</it>, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm.</p> <p>Results</p> <p>Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3<sup>rd </sup>instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275).</p> <p>Conclusion</p> <p>We present the full-scale expression profiles of miRNAs throughout the life cycle of <it>Bombyx mori</it>. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.</p

    Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry

    Get PDF
    The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of 32 774 genes detected by mapping the tags to assembly cotton contigs, 3442 defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between resistant and susceptible cotton plants. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and peroxidase (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the resistant line. Histochemical analysis of lignin revealed that the resistant cotton not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in resistant cotton stems. Overall, a critical role for lignin was believed to contribute to the resistance of cotton to disease

    Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori

    Get PDF
    Using a genome-wide oligonucleotide microarray, gene expression was surveyed in multiple silkworm tissues on day 3 of the fifth instar, providing a new resource for annotating the silkworm genome

    Penicillium marneffei-Stimulated Dendritic Cells Enhance HIV-1 Trans-Infection and Promote Viral Infection by Activating Primary CD4+ T Cells

    Get PDF
    Penicillium marneffei (P. marneffei) is considered an indicator pathogen of AIDS, and the endemicity and clinical features of P. marneffei have been described. While, how the co-infection of P. marneffei exacerbate deterioration of the immune response remains poorly understood. Here we isolated P. marneffei from the cutaneous lesions of AIDS patients and analyzed its effects on HIV-1-dendritic cells (DCs) interaction. We demonstrated that the monocyte-derived dendritic cells (MDDCs) could be activated by both thermally dimorphic forms of P. marneffei for significantly promoting HIV-1 trans-infection of CD4+ T cells, while these activated MDDCs were refractory to HIV-1 infection. Mechanistically, P. marneffei-activated MDDCs endocytosed large amounts of HIV-1 and sequestrated the internalized viruses into tetrapasnin CD81+ compartments potentially for proteolysis escaping. The activated MDDCs increased expression of intercellular adhesion molecule 1 and facilitated the formation of DC-T-cell conjunctions, where much more viruses were recruited. Moreover, we found that P. marneffei-stimulated MDDCs efficiently activated resting CD4+ T cells and induced more susceptible targets for viral infection. Our findings demonstrate that DC function and its interaction with HIV-1 have been modulated by opportunistic pathogens such as P. marneffei for viral dissemination and infection amplification, highlighting the importance of understanding DC-HIV-1 interaction for viral immunopathogenesis elucidation

    Variants in MME are associated with autosomal-recessive distal hereditary motor neuropathy

    Get PDF
    © 2019 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. Objective: To identify a new genetic cause in patients segregating distal hereditary motor neuropathy (dHMN) with an autosomal recessive pattern. Methods: Whole-exome sequencing was conducted in two siblings and was combined with segregation analysis. Additionally, 83 unrelated dHMN patients with unknown genetic cause were screened. RNA analysis was performed using blood lymphocytes and HEK293 cells transfected with mutant plasmids. Immunohistochemistry and Western blot analysis was applied to the nerve tissue. The enzymatic activities of mutant proteins were measured in the cultured cells to verify the pathogenicity of variants. Results: The clinical features of the patients showed late-onset phenotype of distal motor neuropathy without sensory involvement. We identified that compound heterozygous variants of c.1342C\u27T and c.2071_2072delGCinsTT in the membrane metalloendopeptidase (MME) gene co-segregated with the phenotype in a dHMN family. In an additional group of 83 patients with dHMN, compound heterozygous variants of c.1416+2T\u27C and c.2027C\u27T in MME were identified in one patient. The splice site variant c.1416+2T\u27C results in skipping of exon 13. The stop variant c.1342C\u27T induces mRNA degradation via nonsense-mediated mRNA decay. Transcript levels of MME in the lymphocytes showed no significant differences between the patients and controls. We also identified that MME variants were associated with mild decrease in protein expression in the sural nerve and significant impairments of enzymatic activity. Interpretation: Variants in the MME gene were associated with not only a Charcot-Marie-Tooth neuropathy phenotype but also with an autosomal-recessive dHMN phenotype. Loss of function may play a role in the pathogenesis of dHMN

    Severe cutaneous adverse reactions to drugs: A real-world pharmacovigilance study using the FDA Adverse Event Reporting System database

    Get PDF
    Background: Sound drug safety information is important to optimize patient management, but the widely recognized comprehensive landscape of culprit-drugs that cause severe cutaneous adverse reactions (SCARs) is currently lacking.Objective: The main aim of the study is to provide a comprehensive landscape of culprit-drugs for SCARs to guide clinical practice.Methods: We analyzed reports associated with SCARs in the FDA Adverse Event Reporting System database between 1 January 2004 and 31 December 2021 and compiled a list of drugs with potentially serious skin toxicity. According to this list, we summarized the reporting proportions of different drugs and drug classes and conducted disproportionality analysis for all the drugs. In addition, the risk characteristic of SCARs due to different drugs and drug classes was summarized by the positive–negative distribution based on the results of the disproportionality analysis.Results: A total of 77,789 reports in the FDA Adverse Event Reporting System database were considered SCAR-related, of which lamotrigine (6.2%) was the most reported single drug followed by acetaminophen (5.8%) and allopurinol (5.8%) and antibacterials (20.6%) was the most reported drug class followed by antiepileptics (16.7%) and antineoplastics (11.3%). A total of 1,219 drugs were reported as culprit-drugs causing SCARs in those reports, and the largest number of drugs belonged to antineoplastics. In disproportionality analysis, 776 drugs showed at least one positive pharmacovigilance signal. Drugs with the most positive signals were lamotrigine, acetaminophen, furosemide, and sulfamethoxazole/trimethoprim.Conclusion: Our study provided a real-world overview of SCARs to drugs, and the investigation of SCAR positive–negative distribution across different drugs revealed its risk characteristics, which may help optimize patient management
    corecore