9 research outputs found

    Viscosity Deviation Modeling for Binary and Ternary Mixtures of Benzyl Alcohol-N-Hexanol-Water

    No full text
    Knowing the thermodynamic and transport properties of liquid systems is very important in engineering for the development of theoretical models and for the design of new technologies. Models that allow accurate predictions of thermodynamic and transport properties are needed in chemical engineering calculations involving fluid, heat, and mass transfer. In this study, the modeling of viscosity deviation for binary and ternary systems containing benzyl alcohol, n-hexanol, and water, less studied in the literature, was carried out using Redlich and Kister (R-L) models, multiple linear regression (MLR) models and artificial neural networks (ANN). The viscosity of the binary and ternary systems was experimentally determined at the following temperatures: 293.15, 303.15, 313.15, and 323.15 K. Viscosity deviation was calculated and then correlated with mole fractions, normalized temperature, and refractive index. The neural model that led to the best performance in the testing and validation stages contains 4 neurons in the input layer, 12 neurons in the hidden layer, and one neuron in the output layer. In the testing stage for this model, the standard deviation is 0.0067, and the correlation coefficient is 0.999. In the validation stage, a deviation of 0.0226 and a correlation coefficient of 0.996 were obtained. The MLR model led to worse results than those obtained with the neural model and also with the R-L models. The standard deviation for this model is 0.099, and the correlation coefficient is 0.898. Its advantage over the R-L type models is that the influence of both composition and temperature are included in a single equation

    An Experimental Study on the Hot Alkali Extraction of Xylan-Based Hemicelluloses from Wheat Straw and Corn Stalks and Optimization Methods

    No full text
    In this paper, we describe an experimental study on the hot alkali extraction of hemicelluloses from wheat straw and corn stalks, two of the most common lignocellulosic biomass constituents in Romania. The chemical compositions of the raw materials were determined analytically, and the relevant chemical components were cellulose, hemicelluloses, lignin, and ash. Using the response surface methodology, the optimum values of the hot alkaline extraction parameters, i.e., time, temperature, and NaOH concentration, were identified and experimentally validated. The physicochemical characterization of the isolated hemicelluloses was performed using HPLC, FTIR, TG, DTG, and 1H-NMR spectroscopy. The main hemicellulose components identified experimentally were xylan, arabinan, and glucan. The study emphasizes that both corn stalks and wheat straw are suitable as raw materials for hemicellulose extraction, highlighting the advantages of alkaline pretreatments and showing that optimization methods can further improve the process efficiency

    Dermatocosmetic Emulsions Based on Resveratrol, Ferulic Acid and Saffron (Crocus sativus) Extract to Combat Skin Oxidative Stress-Trigger Factor of Some Potential Malignant Effects: Stability Studies and Rheological Properties

    No full text
    The increasing incidence of skin diseases, against the background of increased pollution, urbanism, poor habits in lifestyle, work, rest, diet and general medication, led to the development of products with a protective effect. These new types of dermatocosmetic preparations ensure maximum benefits with minimal formulation. Antioxidants are, nowadays, ingredients that stand out with a proven role in skin protection from oxidative stress and its effects. Thus, research has shown that light-textured formulas, quickly absorbed into the skin, with optimum hydration and protection against excessive free radicals, uphold the skin integrity and appearance. This article aims to evaluate essential criteria for a newly marketed product: stability, rheological properties and microbiological characteristics of oil-in-water emulsions based on a mixture of 3% resveratrol 0.5% ferulic acid and 1mL alcoholic extract of Saffron. The tests led to the conclusion that O / W dermatocosmetic emulsions, based on 3% resveratrol and 0.5% ferulic acid, or also 1mL alcoholic extract of Saffron, show resistance to microbiological contamination, good rheological properties (viscoelastic behavior, structural stability, acceptable shearing behavior) that reveal satisfactory texture and high physical stability during storage. These results encourage the transition to dermatological testing as the final stage in considering a new commercial product

    Preparation, characterization, and application of polysaccharide-based emulsions incorporated with lavender essential oil for skin-friendly cellulosic support

    No full text
    This study aimed to develop polysaccharide-based emulsions incorporated with lavender essential oil and their application on cellulosic support for patches obtaining. The lavender essential oil has been added to emulsions as an active compound mainly due to its antimicrobial properties. In this study, emulsions were used to deliver active ingredients (lavender essential oil). The chemical composition of essential oil was analyzed using gas chromatography-mass spectrometry (GC/MS). A total of seven emulsions (RiACL) were evaluated by determining rheological parameters and microbiological analysis. One of the emulsions (R7ACL) was applied to cellulosic support to obtain non-irritating textiles with controlled release of the active compound and moisturizing effects. Obtained cellulosic support was analyzed in terms of active compound controlled release, toxicity and antimicrobial testing, and skin analysis in healthy volunteers. It was found that the cellulosic supports treated with O/W emulsions are non-irritating, have softness and moisturizing effects, and can be used safely in topical applications for patches obtaining

    Evaluation of the Healing Effect of Ointments Based on Bee Products on Cutaneous Lesions in Wistar Rats

    No full text
    The wound-healing capacity of ointments based on bee products was investigated in vivo on three experimental models of incision, excision and heat burn. For this purpose, four ointments were prepared with propolis, honey, apilarnil (drone brood homogenate) and a mixture of these three apitherapy products. The ointments were applied topically for 21 days. Clinical and macroscopic evaluation was performed throughout the experiment, with the recording of the re-epithelialization period and determination of the wound contraction rate on days 6 and 9. The histopathological examination was performed on days 1, 3, 12 and 21 of the treatment. The topical formulations were also characterized from a rheological point of view in order to verify their stability. HPLC analysis of propolis revealed the presence of phenolic compounds, particularly ferulic acid and p-coumaric which were found in high amounts. All ointments had beneficial effects on wound contraction and the re-epithelialization period, but the most significant result, both macroscopically and especially in terms of histological architecture, was presented by the ointment that contains all three apitherapy products, due to their synergistic effect

    Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze–Thaw Cycles

    No full text
    The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze–thaw cycles, microwaves, and ultrasounds. The two cycles freeze–thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze–thaw cycles allows the partial preservation of the hemicellulose polymeric structure
    corecore