9 research outputs found

    Chorioallantoic placentation in Galea spixii (Rodentia, Caviomorpha, Caviidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Placentas of guinea pig-related rodents are appropriate animal models for human placentation because of their striking similarities to those of humans. To optimize the pool of potential models in this context, it is essential to identify the occurrence of characters in close relatives.</p> <p>Methods</p> <p>In this study we first analyzed chorioallantoic placentation in the prea, Galea spixii, as one of the guinea pig's closest relatives. Material was collected from a breeding group at the University of Mossoró, Brazil, including 18 individuals covering an ontogenetic sequence from initial pregnancy to term. Placentas were investigated by means of histology, electron microscopy, immunohistochemistry (vimentin, α-smooth muscle actin, cytokeration) and proliferation activity (PCNA).</p> <p>Results</p> <p>Placentation in Galea is primarily characterized by an apparent regionalization into labyrinth, trophospongium and subplacenta. It also has associated growing processes with clusters of proliferating trophoblast cells at the placental margin, internally directed projections and a second centre of proliferation in the labyrinth. Finally, the subplacenta, which is temporarily supplied in parallel by the maternal and fetal blood systems, served as the center of origin for trophoblast invasion.</p> <p>Conclusion</p> <p>Placentation in Galea reveals major parallels to the guinea pig and other caviomorphs with respect to the regionalization of the placenta, the associated growing processes, as well as trophoblast invasion. A principal difference compared to the guinea pig occurred in the blood supply of the subplacenta. Characteristics of the invasion and expanding processes indicate that Galea may serve as an additional animal model that is much smaller than the guinea pig and where the subplacenta partly has access to both maternal and fetal blood systems.</p

    Tropical Fruit Pulps: Processing, Product Standardization and Main Control Parameters for Quality Assurance

    Get PDF
    ABSTRACT Fruit pulp is the most basic food product obtained from fresh fruit processing. Fruit pulps can be cold stored for long periods of time, but they also can be used to fabricate juices, ice creams, sweets, jellies and yogurts. The exploitation of tropical fruits has leveraged the entire Brazilian fruit pulp sector due mainly to the high acceptance of their organoleptic properties and remarkable nutritional facts. However, several works published in the last decades have pointed out unfavorable conditions regarding the consumption of tropical fruit pulps. This negative scenario has been associated with unsatisfactory physico-chemical and microbiological parameters of fruits pulps as outcomes of little knowledge and improper management within the fruit pulp industry. There are protocols for delineating specific identity and quality standards (IQSs) and standardized good manufacturing practices (GMP) for fruit pulps, which also embrace standard operating procedures (SOPs) and hazard analysis and critical control points (HACCP), although this latter is not considered mandatory by the Brazilian legislation. Unfortunately, the lack of skilled labor, along with failures in complying established protocols have impaired quality of fruit pulps. It has been necessary to collect all information available with the aim to identify the most important hazards within fruit pulp processing lines. Standardizing methods and practices within the Brazilian fruit pulp industry would assurance high quality status to tropical fruit pulps and the commercial growth of this vegetal product towards international markets

    SAND FLIES (DIPTERA: PSYCHODIDAE) IN AN ENDEMIC AREA OF LEISHMANIASIS IN AQUIDAUANA MUNICIPALITY, PANTANAL OF MATO GROSSO DO SUL , BRAZIL

    No full text

    Vascular Dysfunction in Mother and Offspring During Preeclampsia: Contributions from Latin-American Countries

    No full text
    corecore