596 research outputs found

    Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy

    Get PDF
    The development of left ventricular hypertrophy in subjects with hypertrophic cardiomyopathy (HCM) is variable, suggesting a ro

    Nitric Oxide-cGMP Signaling in Hypertension:Current and Future Options for Pharmacotherapy

    Get PDF
    For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension

    Prorenin anno 2008

    Get PDF
    For many years, prorenin has been considered to be nothing more than the inactive precursor of renin. Yet, its elevated levels in diabetic subjects with microvascular complications and its extrarenal production at various sites in the body suggest otherwise. This review discusses the origin, regulation, and enzymatic activity of prorenin, its role during renin inhibition, and the angiotensin-dependent and angiotensin-independent consequences of its binding to the recently discovered (pro)renin receptor. The review ends with the concept that prorenin rather than renin determines tissue angiotensin generation

    Proton gradient formation in early endosomes from proximal tubules

    Get PDF
    AbstractHeavy endosomes were isolated from proximal tubules using a combination of magnesium precipitation and wheat-germ agglutinin negative selection techniques. Two small GTPases (Rab4 and Rab5) known to be specifically present in early endosomes were identified in our preparations. Endosomal acidification was followed fluorimetrically using acridine orange. In presence of chloride ions and ATP, the formation of a proton gradient (ΔpH) was observed. This process is due to the activity of an electrogenic V-type ATPase present in the endosomal membrane since specific inhibitors bafilomycin and folimycin effectively prevented or eliminated endosomal acidification. In presence of chloride ions (Km = 30 mM) the formation of the proton gradient was optimal. Inhibitors of chloride channel activity such as DIDS and NPPB reduced acidification. The presence of sodium ions stimulated the dissipation of the proton gradient. This effect of sodium was abolished by amiloride derivative (MIA) but only when loaded into endosomes, indicating the presence of a physiologically oriented Na+/H+-exchanger in the endosomal membrane. Monensin restored the gradient dissipation. Thus three proteins (V-type ATPase, Cl−-channel, Na+/H+-exchanger) present in early endosomas isolated from proximal tubules may regulate the formation, maintenance and dissipation of the proton gradient

    Human Transplant Kidneys on Normothermic Machine Perfusion Display Endocrine Activity

    Get PDF
    Background. Normothermic machine perfusion (NMP) is an alternative to hypothermic machine perfusion (HMP) for donor kidney preservation before transplantation. Contrary to HMP, NMP allows for functional assessment of donor kidneys because normothermic conditions allow for metabolic activity. The kidneys are key producers of hormones. Yet, it remains unknown whether donor kidneys during NMP display endocrine functions. Methods. Fifteen donor kidneys were subjected to HMP followed by 2 h of NMP before transplantation. NMP perfusate was collected at 3 time points (0, 1, 2 h) for the measurements of prorenin/renin, erythropoietin (EPO), and vitamin D, and urine samples were collected at 1 h and 2 h for urodilatin measurement. Fifteen HMP perfusate samples were collected for the same measurements. Results. Kidneys on NMP secreted significantly more prorenin, renin, EPO, and active vitamin D than during HMP. EPO and vitamin D secretion remained stable during 2 h of NMP, whereas the prorenin release rate increased and renin release rate decreased after 1 h. Donation after brain death kidneys secreted more vitamin D and less EPO during NMP than donation after circulatory death kidneys. Twelve donor kidneys produced urine during NMP and released detectable levels of urodilatin. Kidneys exhibited a large variation in hormone release rates. No significant differences were found in hormone release capacity between delayed graft function (DGF) and non-DGF kidneys, and no significant correlations were found between hormone release rates and the duration of DGF or 1-mo posttransplant serum creatinine levels. Conclusions. Human transplant kidneys display endocrine activity during NMP. To explore whether correlations exist between hormone release rates and posttransplant kidney function, large numbers of kidneys are required.</p

    Chronic kidney disease increases the susceptibility to negative effects of low and high potassium intake

    Get PDF
    BackgroundDietary potassium (K+) has emerged as a modifiable factor for cardiovascular and kidney health in the general population, but its role in people with chronic kidney disease (CKD) is unclear. Here, we hypothesize that CKD increases the susceptibility to the negative effects of low and high K+ diets.MethodsWe compared the effects of low, normal and high KChloride (KCl) diets and a high KCitrate diet for 4 weeks in male rats with normal kidney function and in male rats with CKD using the 5/6th nephrectomy model (5/6Nx).ResultsCompared with rats with normal kidney function, 5/6Nx rats on the low KCl diet developed more severe extracellular and intracellular K+ depletion and more severe kidney injury, characterized by nephromegaly, infiltration of T cells and macrophages, decreased estimated glomerular filtration rate and increased albuminuria. The high KCl diet caused hyperkalemia, hyperaldosteronism, hyperchloremic metabolic acidosis and severe hypertension in 5/6Nx but not in sham rats. The high KCitrate diet caused hypochloremic metabolic alkalosis but attenuated hypertension despite higher abundance of the phosphorylated sodium chloride cotransporter (pNCC) and similar levels of plasma aldosterone and epithelial sodium channel abundance. All 5/6Nx groups had more collagen deposition than the sham groups and this effect was most pronounced in the high KCitrate group. Plasma aldosterone correlated strongly with kidney collagen deposition.ConclusionsCKD increases the susceptibility to negative effects of low and high K+ diets in male rats, although the injury patterns are different. The low K+ diet caused inflammation, nephromegaly and kidney function decline, whereas the high K+ diet caused hypertension, hyperaldosteronism and kidney fibrosis. High KCitrate attenuated the hypertensive but not the pro-fibrotic effect of high KCl, which may be attributable to K+-induced aldosterone secretion. Our data suggest that especially in people with CKD it is important to identify the optimal threshold of dietary K+ intake
    corecore