32 research outputs found

    Distribution of Aromatic Compounds in Coastal Bermudagrass Cell Walls Using Ultraviolet Absorption Scanning Microspectrophotometry

    Get PDF
    The distribution of aromatic constituents, including lignin , in the leaf cell walls of Coastal hermudagrass (Cynodon dacrylon (L.) Pers.) was investigated using scanning ultraviolet (UV) microspectrophotometry. Leaf blade sections and individual tissue types were scanned at three wavelengths representing the absorbance maxima (318, 287 and 250 nm) of aromatic constituents present in bermudagrass leaves. The measured absorbance data were printed in a geometric arrangement to produce an image of the distribution and amount of aromatic constituents among and within cell wall types which vary in digestibility . Differences in absorbance were observed among cell wall types, among walls of the same cell type, and at different sites in individual cell walls. Scans of the mid vein at lOX magnification showed that various tissues and cells could be distinguished on the basis of U V absorbance. The abaxial sclerenchyma and mestome sheath gave the highest absorbance followed by those of the epidermis and parenchyma bundle sheath . The lowest levels of absorbance were observed in the mesophyll, parenchyma tissue and xylem tissue. Images produced from scanning individual cell walls at lOOx magnification showed the heterogeneous nature of aromatic constituents within a cell wall. Varying the wavelength resulted in similar but not identical images, indicating that variations in the chemical structures of aromatic constituents in the cell wall can he detected using this technique

    Cell-Wall Composition and Accessibility to Hydrolytic Enzymes is Differentially Altered in Divergently Bred Switchgrass (\u3ci\u3ePanicum virgatum\u3c/i\u3e L.) Genotypes

    Get PDF
    The aims of this study were to understand the genotypic variability in cell-wall composition and cell-wall accessibility to enzymes in select switchgrass plants obtained from two different populations derived from a base population of octaploid cultivars. Population C+3 was developed by three breeding generations for high digestibility and population C−1 developed by one generation of breeding for low digestibility. Aboveground biomass from 12 selected genotypes, three each with high or low digestibility within each population, was analyzed for their cell-wall aromatics and polysaccharides. The ratio of p-coumaric acid/ferulic acid was greater (P≀0.05) for the high-lignin C−1 population over the low-lignin C+3 population, although the amounts of these two phenolics did not differ between populations. Combined values of guaiacyl+syringyl-lignin were consistently higher in genotypes from the C−1 population as compared to the genotypes from the C+3 population. Overall, p-coumaric acid was released by enzymes in greater amounts than ferulic acid in all these genotypes. Genotypes in the C−1 population exhibited lower dry weight loss as compared to the genotypes in the C+3 population after enzymatic digestion, suggesting changes in cell-wall architecture. Overall, our data highlight the phenotypic plasticity coded by the switchgrass genome and suggest that combining dry matter digestibility with other more specific cell-wall traits could result in genotypes with greater utility as bioenergy feedstocks

    Randomized Trial of Ciclosporin with 2-h Monitoring vs. Tacrolimus with Trough Monitoring in Liver Transplantation:DELTA Study

    Get PDF
    Background and Aims: Previous trials comparing cyclosporine and tacrolimus after liver transplantation (LT) showed conflicting results. Most used trough monitoring for cyclosporine (C0), leading to less accurate dosing than with 2-h monitoring (C2). Only one larger trial compared C2 with tacrolimus based on trough level (T0) after LT, with similar treated biopsy-proven acute rejection (tBPAR) and graft loss, while a smaller trial had less tBPAR with C2 compared to T0. Therefore, it is still unclear which calcineurin inhibitor is preferred after LT. We aimed to demonstrate superior efficacy (tBPAR), tolerability, and safety of C2 or T0 after first LT. Methods: Patients after first LT were randomized to C2 or T0. tBPAR, patient-and graft survival, safety and tolerability were the main endpoints, with analysis by Fisher test, Kaplan–Meier survival analysis and log-rank test. Results: In intention-to treat analysis 84 patients on C2 and 85 on T0 were included. Cumulative incidence of tBPAR C2 vs. T0 was 17.7% vs. 8.4% at 3 months (p=0.104), and 21.9% vs. 9.7% at 6 and 12 months (p=0.049). One-year cumulative mortality C2 vs. T0 was 15.5% vs. 5.9% (p=0.049) and graft loss 23.8% vs. 9.4% (p=0.015). Serum triglyceride and LDL-cholesterol was lower with T0 than with C2. Incidence of diarrhea in T0 vs, C2 was 64% vs. 31% (p≀0.001), with no other differences in safety and tolerability. Conclusions: In the first year after LT immunosuppression with T0 leads to less tBPAR and better patient-/re-transplant-free survival as compared to C2.</p

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    Forage Cell Wall Degradation and ρ‐Coumaric, Ferulic, and Sinapic Acids 1

    No full text

    Rumen Fungi and Forage Fiber Degradation

    No full text
    The role of anaerobic rumen fungi in in vitro forage fiber degradation was determined in a two forage × two inoculum source × five treatment factorial design. Forages used as substrates for rumen microorganisms were Coastal bermuda grass and alfalfa; inoculum sources were rumen fluid samples from a steer fed Coastal bermuda grass hay or alfalfa hay; treatments were whole rumen fluid (WRF), WRF plus streptomycin (0.2 mg/ml of rumen fluid) and penicillin (1.25 mg/ml of fluid), WRF plus cycloheximide (0.5 mg/ml of fluid), WRF plus streptomycin, penicillin, and cycloheximide, and McDougall buffer. Populations of fungi as shown by sporangial development were greater on bermuda grass leaves than on alfalfa leaflets regardless of inoculum source. However, endogenous fungal populations were greater from the alfalfa hay inoculum. Cycloheximide inhibited the fungi, whereas streptomycin and penicillin, which inhibit bacterial populations, resulted in an increase in numbers of sporangia in the alfalfa inoculum, suggesting an interaction between bacteria and fungi. Bacteria (i.e., WRF plus cycloheximide) were equal to the total population in degrading dry matter, neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and cellulose for both inocula and both forages. Degradation of dry matter, NDF, ADF, and cellulose by anaerobic fungi (i.e., WRF plus streptomycin and penicillin) was less than that due to the total population or bacteria alone. However, NDF, ADF, and cellulose digestion was 1.3, 2.4, and 7.9 percentage units higher, respectively, for bermuda grass substrate with the alfalfa versus bermuda grass inoculum, suggesting a slight benefit by rumen fungi. No substantial loss of lignin (72% H(2)SO(4) method) occurred due to fungal degradation. The most active fiber-digesting population in the rumen was the bacteria, even when streptomycin and penicillin treatment resulted in an increase in rumen fungi over untreated WRF. The development of large numbers of sporangia on fiber may not indicate a substantial role as digesters of forage

    Degradation of Bermuda and Orchard Grass by Species of Ruminal Bacteria

    No full text
    corecore