572 research outputs found

    A novel galacturonide from Xanthomonas campestris

    Get PDF
    Enzyme preparations from Xanthomonas campestris incubated in the presence of UDP-[14C]GlcA and Mg2+ produced a lipophilic galacturonide with unusual properties. It was easily degraded by both mild acid treatment (0.01 M-HCl, 100°C, 10 min) and mild alkali treatment (0.06 M-NaOH, room temperature, 5 min) releasing free [14C]galacturonic acid. The galacturonide appeared to be a single compound with one negative charge, as judged by TLC, paper electrophoresis and chromotography, LH-20 gel filtration and DEAE-cellulose column chromatography. Competition experiments indicated that the true glycosyl donor was UDP-GalA, in agreement with the detection of UDP-GlcA-4-epimerase activity in the crude enzyme preparation. The transglycosidase activity was located mainly in the membrane fraction. UDP inhibited the reaction and even produced some loss of label, suggesting an easily reversible reaction. UMP had almost no effect.Fil:Baldessari, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ielpi, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dankert, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Black holes as mirrors: quantum information in random subsystems

    Get PDF
    We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the "half-way" point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity clarifie

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing

    Full text link
    Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a device's prospects with regards to achieving fault-tolerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized π2\frac{\pi}{2} pulse of 1.3±0.1×1041.3 \pm 0.1 \times 10^{-4} with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of 4.7±0.3×1034.7 \pm 0.3 \times 10^{-3} for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.Comment: 10 pages, 6 figures, submitted versio

    Refraction of a Gaussian Seaway

    Full text link
    Refraction of a Longuet-Higgins Gaussian sea by random ocean currents creates persistent local variations in average energy and wave action. These variations take the form of lumps or streaks, and they explicitly survive dispersion over wavelength and incoming wave propagation direction. Thus, the uniform sampling assumed in the venerable Longuet-Higgins theory does not apply following refraction by random currents. Proper handling of the non-uniform sampling results in greatly increased probability of freak wave formation. The present theory represents a synthesis of Longuet-Higgins Gaussian seas and the refraction model of White and Fornberg, which considered the effect of currents on a plane wave incident seaway. Using the linearized equations for deep ocean waves, we obtain quantitative predictions for the increased probability of freak wave formation when the refractive effects are taken into account. The crest height or wave height distribution depends primarily on the ``freak index", gamma, which measures the strength of refraction relative to the angular spread of the incoming sea. Dramatic effects are obtained in the tail of this distribution even for the modest values of the freak index that are expected to occur commonly in nature. Extensive comparisons are made between the analytical description and numerical simulations.Comment: 18 pages, 10 figure

    Quantum authentication with key recycling

    Get PDF
    We show that a family of quantum authentication protocols introduced in [Barnum et al., FOCS 2002] can be used to construct a secure quantum channel and additionally recycle all of the secret key if the message is successfully authenticated, and recycle part of the key if tampering is detected. We give a full security proof that constructs the secure channel given only insecure noisy channels and a shared secret key. We also prove that the number of recycled key bits is optimal for this family of protocols, i.e., there exists an adversarial strategy to obtain all non-recycled bits. Previous works recycled less key and only gave partial security proofs, since they did not consider all possible distinguishers (environments) that may be used to distinguish the real setting from the ideal secure quantum channel and secret key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and secret key resource have been slightly redefined; also added a proof in the appendix for quantum authentication without key recycling that has better parameters and only requires weak purity testing code
    corecore