4,121 research outputs found
The Russian corporation: patterns of behavior during the crisis
This paper considers the behavior patterns of Russian firms before and during the financial crisis of 2008-2009. To facilitate comparison, we define three main
groups of actors at the firm level in the Russian economy – large, politically connected companies; mid-size firms that expanded in the 2000s with the help of administrative support, and successful mid-size firms driven by market factors.
Many of the large companies practiced highly risky financial policy and experienced a decrease in efficiency before the crisis, and the managers and owners of some Russian firms have been engaging in opportunistic behavior
during the crisis; the forms and causes of this behavior are analyzed here. We conclude by proposing some policy implications with emphasis on supporting successful mid-size firms driven by market factors
Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions
We derive relations between various observables for N particles with
zero-range or short-range interactions, in continuous space or on a lattice, in
two or three dimensions, in an arbitrary external potential. Some of our
results generalise known relations between large-momentum behavior of the
momentum distribution, short-distance behavior of the pair correlation function
and of the one-body density matrix, derivative of the energy with respect to
the scattering length or to time, and the norm of the regular part of the
wavefunction; in the case of finite-range interactions, the interaction energy
is also related to dE/da. The expression relating the energy to a functional of
the momentum distribution is also generalised, and is found to break down for
Efimov states with zero-range interactions, due to a subleading oscillating
tail in the momentum distribution. We also obtain new expressions for the
derivative of the energy of a universal state with respect to the effective
range, the derivative of the energy of an efimovian state with respect to the
three-body parameter, and the second order derivative of the energy with
respect to the inverse (or the logarithm in the two-dimensional case) of the
scattering length. The latter is negative at fixed entropy. We use exact
relations to compute corrections to exactly solvable three-body problems and
find agreement with available numerics. For the unitary gas, we compare exact
relations to existing fixed-node Monte-Carlo data, and we test, with existing
Quantum Monte Carlo results on different finite range models, our prediction
that the leading deviation of the critical temperature from its zero range
value is linear in the interaction effective range r_e with a model independent
numerical coefficient.Comment: 51 pages, 5 figures. Split into three articles: Phys. Rev. A 83,
063614 (2011) [arXiv:1103.5157]; Phys. Rev. A 86, 013626 (2012)
[arXiv:1204.3204]; Phys. Rev. A 86, 053633 (2012) [ arXiv:1210.1784
SYNTHETIC THERMAL BACKGROUND AND OBJECT TEXTURE GENERATION USING GEOMETRIC INFORMATION AND GAN
Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. Nevertheless, such methods require to have large databases of multispectral images of various objects to achieve state-of-the-art results. Therefore the dataset generation is one of the major challenges for the successful training of a deep neural network. However, infrared image datasets that are large enough for successful training of a deep neural network are not available in the public domain. Generation of synthetic datasets using 3D models of various scenes is a time-consuming method that requires long computation time and is not very realistic. This paper is focused on the development of the method for thermal image synthesis using a GAN (generative adversarial network). The aim of the presented work is to expand and complement the existing datasets of real thermal images. Today, deep convolutional networks are increasingly used for the goal of synthesizing various images. Recently a new generation of such algorithms commonly called GAN has become a promising tool for synthesizing images of various spectral ranges. These networks show effective results for image-to-image translations. While it is possible to generate a thermal texture for a single object, generation of environment textures is extremely difficult due to the presence of a large number of objects with different emission sources. The proposed method is based on a joint approach that uses 3D modeling and deep learning. Synthesis of background textures and objects textures is performed using a generative-adversarial neural network and semantic and geometric information about objects generated using 3D modeling. The developed approach significantly improves the realism of the synthetic images, especially in terms of the quality of background textures
Parity violation in deuteron photo-disintegration
We analyze the energy dependence for two types of parity-non-conserving
(PNC) asymmetries in the reaction in the near-threshold
region. The first one is the asymmetry in reaction with circularly polarized
photon beam and unpolarized deuteron target. The second one corresponds to
those with an unpolarized photon beam and polarized target. We find that the
two asymmetries have quite different energy dependence, and their shapes are
sensitive to the PNC-meson exchange coupling constants.
The predictions for the future possible experiments to provide definite
constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0
Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs
We define a function by means of the minimum weight flow on a planar graph
and prove that this function solves the ultradiscrete Toda molecule equation,
its B\"acklund transformation and the two dimensional Toda molecule equation.
The method we employ in the proof can be considered as fundamental to the
integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v
Sensory supplementation system based on electrotactile tongue biofeedback of head position for balance control
The present study aimed at investigating the effects of an artificial head
position-based tongue-placed electrotactile biofeedback on postural control
during quiet standing under different somatosensory conditions from the support
surface. Eight young healthy adults were asked to stand as immobile as possible
with their eyes closed on two Firm and Foam support surface conditions executed
in two conditions of No-biofeedback and Biofeedback. In the Foam condition, a
6-cm thick foam support surface was placed under the subjects' feet to alter
the quality and/or quantity of somatosensory information at the plantar sole
and the ankle. The underlying principle of the biofeedback consisted of
providing supplementary information about the head orientation with respect to
gravitational vertical through electrical stimulation of the tongue. Centre of
foot pressure (CoP) displacements were recorded using a force platform. Larger
CoP displacements were observed in the Foam than Firm conditions in the two
conditions of No-biofeedback and Biofeedback. Interestingly, this destabilizing
effect was less accentuated in the Biofeedback than No-biofeedback condition.
In accordance with the sensory re-weighting hypothesis for balance control, the
present findings evidence that the availability of the central nervous system
to integrate an artificial head orientation information delivered through
electrical stimulation of the tongue to limit the postural perturbation induced
by alteration of somatosensory input from the support surface
Radio-frequency Bloch-transistor electrometer
A quantum-limited electrometer based on charge modulation of the Josephson
supercurrent in the Bloch transistor inserted into a superconducting ring is
proposed. As this ring is inductive coupled to a high-Q resonance tank circuit,
the variations of the charge on the transistor island (input signal) are
converted into variations of amplitude and phase of radio-frequency
oscillations in the tank. These variations are amplified and then detected. The
output noise, the back-action fluctuations and their cross-correlation are
computed. It is shown that our device enables measurements of the charge with a
sensitivity which is determined by the energy resolution of its amplifier, that
can be reduced down to the standard quantum limit of \hbar/2. On the basis of
this setup a "back-action-evading" scheme of the charge measurements is
proposed.Comment: 5 pages incl. 2 figure
Diacoptical analysis algorithms of topological site models of information backup and storage carrier
Diacoptical topological models of algorithms analysis describes the tape transportation mechanism with the account of the distribution of options of tape and fast algorithms for obtaining the characteristic polynomial of the transfer function of the system and for graphs of finite element model of the tape for two-node cubic and rod finite elements
- …