4,121 research outputs found

    The Russian corporation: patterns of behavior during the crisis

    Get PDF
    This paper considers the behavior patterns of Russian firms before and during the financial crisis of 2008-2009. To facilitate comparison, we define three main groups of actors at the firm level in the Russian economy – large, politically connected companies; mid-size firms that expanded in the 2000s with the help of administrative support, and successful mid-size firms driven by market factors. Many of the large companies practiced highly risky financial policy and experienced a decrease in efficiency before the crisis, and the managers and owners of some Russian firms have been engaging in opportunistic behavior during the crisis; the forms and causes of this behavior are analyzed here. We conclude by proposing some policy implications with emphasis on supporting successful mid-size firms driven by market factors

    Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions

    Get PDF
    We derive relations between various observables for N particles with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary external potential. Some of our results generalise known relations between large-momentum behavior of the momentum distribution, short-distance behavior of the pair correlation function and of the one-body density matrix, derivative of the energy with respect to the scattering length or to time, and the norm of the regular part of the wavefunction; in the case of finite-range interactions, the interaction energy is also related to dE/da. The expression relating the energy to a functional of the momentum distribution is also generalised, and is found to break down for Efimov states with zero-range interactions, due to a subleading oscillating tail in the momentum distribution. We also obtain new expressions for the derivative of the energy of a universal state with respect to the effective range, the derivative of the energy of an efimovian state with respect to the three-body parameter, and the second order derivative of the energy with respect to the inverse (or the logarithm in the two-dimensional case) of the scattering length. The latter is negative at fixed entropy. We use exact relations to compute corrections to exactly solvable three-body problems and find agreement with available numerics. For the unitary gas, we compare exact relations to existing fixed-node Monte-Carlo data, and we test, with existing Quantum Monte Carlo results on different finite range models, our prediction that the leading deviation of the critical temperature from its zero range value is linear in the interaction effective range r_e with a model independent numerical coefficient.Comment: 51 pages, 5 figures. Split into three articles: Phys. Rev. A 83, 063614 (2011) [arXiv:1103.5157]; Phys. Rev. A 86, 013626 (2012) [arXiv:1204.3204]; Phys. Rev. A 86, 053633 (2012) [ arXiv:1210.1784

    Using of drag reducing agents to improve capacity of pipeline Palkino-Kirishi

    Get PDF

    SYNTHETIC THERMAL BACKGROUND AND OBJECT TEXTURE GENERATION USING GEOMETRIC INFORMATION AND GAN

    Get PDF
    Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. Nevertheless, such methods require to have large databases of multispectral images of various objects to achieve state-of-the-art results. Therefore the dataset generation is one of the major challenges for the successful training of a deep neural network. However, infrared image datasets that are large enough for successful training of a deep neural network are not available in the public domain. Generation of synthetic datasets using 3D models of various scenes is a time-consuming method that requires long computation time and is not very realistic. This paper is focused on the development of the method for thermal image synthesis using a GAN (generative adversarial network). The aim of the presented work is to expand and complement the existing datasets of real thermal images. Today, deep convolutional networks are increasingly used for the goal of synthesizing various images. Recently a new generation of such algorithms commonly called GAN has become a promising tool for synthesizing images of various spectral ranges. These networks show effective results for image-to-image translations. While it is possible to generate a thermal texture for a single object, generation of environment textures is extremely difficult due to the presence of a large number of objects with different emission sources. The proposed method is based on a joint approach that uses 3D modeling and deep learning. Synthesis of background textures and objects textures is performed using a generative-adversarial neural network and semantic and geometric information about objects generated using 3D modeling. The developed approach significantly improves the realism of the synthetic images, especially in terms of the quality of background textures

    Parity violation in deuteron photo-disintegration

    Full text link
    We analyze the energy dependence for two types of parity-non-conserving (PNC) asymmetries in the reaction γDnp\gamma D\to np in the near-threshold region. The first one is the asymmetry in reaction with circularly polarized photon beam and unpolarized deuteron target. The second one corresponds to those with an unpolarized photon beam and polarized target. We find that the two asymmetries have quite different energy dependence, and their shapes are sensitive to the PNC-meson exchange coupling constants. The predictions for the future possible experiments to provide definite constraints for the PNC-coupling constants are discussed.Comment: 22 pages, 12 figures. Submitted to Phys.Rev.C 10Oct.0

    Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs

    Full text link
    We define a function by means of the minimum weight flow on a planar graph and prove that this function solves the ultradiscrete Toda molecule equation, its B\"acklund transformation and the two dimensional Toda molecule equation. The method we employ in the proof can be considered as fundamental to the integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v

    Sensory supplementation system based on electrotactile tongue biofeedback of head position for balance control

    Full text link
    The present study aimed at investigating the effects of an artificial head position-based tongue-placed electrotactile biofeedback on postural control during quiet standing under different somatosensory conditions from the support surface. Eight young healthy adults were asked to stand as immobile as possible with their eyes closed on two Firm and Foam support surface conditions executed in two conditions of No-biofeedback and Biofeedback. In the Foam condition, a 6-cm thick foam support surface was placed under the subjects' feet to alter the quality and/or quantity of somatosensory information at the plantar sole and the ankle. The underlying principle of the biofeedback consisted of providing supplementary information about the head orientation with respect to gravitational vertical through electrical stimulation of the tongue. Centre of foot pressure (CoP) displacements were recorded using a force platform. Larger CoP displacements were observed in the Foam than Firm conditions in the two conditions of No-biofeedback and Biofeedback. Interestingly, this destabilizing effect was less accentuated in the Biofeedback than No-biofeedback condition. In accordance with the sensory re-weighting hypothesis for balance control, the present findings evidence that the availability of the central nervous system to integrate an artificial head orientation information delivered through electrical stimulation of the tongue to limit the postural perturbation induced by alteration of somatosensory input from the support surface

    Radio-frequency Bloch-transistor electrometer

    Full text link
    A quantum-limited electrometer based on charge modulation of the Josephson supercurrent in the Bloch transistor inserted into a superconducting ring is proposed. As this ring is inductive coupled to a high-Q resonance tank circuit, the variations of the charge on the transistor island (input signal) are converted into variations of amplitude and phase of radio-frequency oscillations in the tank. These variations are amplified and then detected. The output noise, the back-action fluctuations and their cross-correlation are computed. It is shown that our device enables measurements of the charge with a sensitivity which is determined by the energy resolution of its amplifier, that can be reduced down to the standard quantum limit of \hbar/2. On the basis of this setup a "back-action-evading" scheme of the charge measurements is proposed.Comment: 5 pages incl. 2 figure

    Diacoptical analysis algorithms of topological site models of information backup and storage carrier

    Get PDF
    Diacoptical topological models of algorithms analysis describes the tape transportation mechanism with the account of the distribution of options of tape and fast algorithms for obtaining the characteristic polynomial of the transfer function of the system and for graphs of finite element model of the tape for two-node cubic and rod finite elements
    corecore