714 research outputs found

    A context based model for sentiment analysis in twitter for the italian language

    Get PDF
    Studi recenti per la Sentiment Analysis in Twitter hanno tentato di creare modelli per caratterizzare la polarit´a di un tweet osservando ciascun messaggio in isolamento. In realt`a, i tweet fanno parte di conversazioni, la cui natura pu`o essere sfruttata per migliorare la qualit`a dell’analisi da parte di sistemi automatici. In (Vanzo et al., 2014) `e stato proposto un modello basato sulla classificazione di sequenze per la caratterizzazione della polarit` a dei tweet, che sfrutta il contesto in cui il messaggio `e immerso. In questo lavoro, si vuole verificare l’applicabilit`a di tale metodologia anche per la lingua Italiana.Recent works on Sentiment Analysis over Twitter leverage the idea that the sentiment depends on a single incoming tweet. However, tweets are plunged into streams of posts, thus making available a wider context. The contribution of this information has been recently investigated for the English language by modeling the polarity detection as a sequential classification task over streams of tweets (Vanzo et al., 2014). Here, we want to verify the applicability of this method even for a morphological richer language, i.e. Italian

    Robust Spoken Language Understanding for House Service Robots

    Get PDF
    Service robotics has been growing significantly in thelast years, leading to several research results and to a numberof consumer products. One of the essential features of theserobotic platforms is represented by the ability of interactingwith users through natural language. Spoken commands canbe processed by a Spoken Language Understanding chain, inorder to obtain the desired behavior of the robot. The entrypoint of such a process is represented by an Automatic SpeechRecognition (ASR) module, that provides a list of transcriptionsfor a given spoken utterance. Although several well-performingASR engines are available off-the-shelf, they operate in a generalpurpose setting. Hence, they may be not well suited in therecognition of utterances given to robots in specific domains. Inthis work, we propose a practical yet robust strategy to re-ranklists of transcriptions. This approach improves the quality of ASRsystems in situated scenarios, i.e., the transcription of roboticcommands. The proposed method relies upon evidences derivedby a semantic grammar with semantic actions, designed tomodel typical commands expressed in scenarios that are specificto human service robotics. The outcomes obtained throughan experimental evaluation show that the approach is able toeffectively outperform the ASR baseline, obtained by selectingthe first transcription suggested by the AS

    A discriminative approach to grounded spoken language understanding in interactive robotics

    Get PDF
    Spoken Language Understanding in Interactive Robotics provides computational models of human-machine communication based on the vocal input. However, robots operate in specific environments and the correct interpretation of the spoken sentences depends on the physical, cognitive and linguistic aspects triggered by the operational environment. Grounded language processing should exploit both the physical constraints of the context as well as knowledge assumptions of the robot. These include the subjective perception of the environment that explicitly affects linguistic reasoning. In this work, a standard linguistic pipeline for semantic parsing is extended toward a form of perceptually informed natural language processing that combines discriminative learning and distributional semantics. Empirical results achieve up to a 40% of relative error reduction

    GQA-it: Italian Question Answering on Image Scene Graphs

    Get PDF
    The recent breakthroughs in the field of deep learning have lead to state-of-the-art results in several Computer Vision and Natural Language Processing tasks such as Visual Question Answering (VQA). Nevertheless, the training requirements in cross-linguistic settings are not completely satisfying at the moment. The datasets suitable for training VQA systems for non English languages are still not available, thus representing a significant barrier for most neural methods. This paper explores the possibility of acquiring in a semiautomatic fashion a large-scale dataset for VQA in Italian. It consists of more than 1 M question-answer pairs over 80k images, with a test set of 3,000 question-answer pairs manually validated. To the best of our knowledge, the models trained on this dataset represent the first attempt to approach VQA in Italian, with experimental results comparable with those obtained on the English original material

    Preface to the fifth Workshop on Natural Language for Artificial Intelligence (NL4AI)

    Get PDF
    Preface to the fifth Workshop on Natural Language for Artificial Intelligence (NL4AI

    Lessons Learned from EVALITA 2020 and Thirteen Years of Evaluation of Italian Language Technology

    Get PDF
    This paper provides a summary of the 7th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian (EVALITA2020) which was held online on December 17th, due to the 2020 COVID-19 pandemic. The 2020 edition of Evalita included 14 different tasks belonging to five research areas, namely: (i) Affect, Hate, and Stance, (ii) Creativity and Style, (iii) New Challenges in Long-standing Tasks, (iv) Semantics and Multimodality, (v) Time and Diachrony. This paper provides a description of the tasks and the key findings from the analysis of participant outcomes. Moreover, it provides a detailed analysis of the participants and task organizers which demonstrates the growing interest with respect to this campaign. Finally, a detailed analysis of the evaluation of tasks across the past seven editions is provided; this allows to assess how the research carried out by the Italian community dealing with Computational Linguistics has evolved in terms of popular tasks and paradigms during the last 13 years

    On the Readability of Deep Learning Models: the role of Kernel-based Deep Architectures

    Get PDF
    Deep Neural Networks achieve state-of-the-art performances in several semantic NLP tasks but lack of explanation capabilities as for the limited interpretability of the underlying acquired models. In other words, tracing back causal connections between the linguistic properties of an input instance and the produced classification is not possible. In this paper, we propose to apply Layerwise Relevance Propagation over linguistically motivated neural architectures, namely Kernel-based Deep Architectures (KDA), to guide argumentations and explanation inferences. In this way, decisions provided by a KDA can be linked to the semantics of input examples, used to linguistically motivate the network output.Le Deep Neural Network raggiungono oggi lo stato dell’arte in molti processi di NLP, ma la scarsa interpretabilitá dei modelli risultanti dall’addestramento limita la comprensione delle loro inferenze. Non é possibile cioé determinare connessioni causali tra le proprietá linguistiche di un esempio e la classificazione prodotta dalla rete. In questo lavoro, l’applicazione della Layerwise Relevance Propagation alle Kernel-based Deep Architecture (KDA) é usata per determinare connessioni tra la semantica dell’input e la classe di output che corrispondono a spiegazioni linguistiche e trasparenti della decisione
    • …
    corecore