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Abstract

English. Deep Neural Networks achieve

state-of-the-art performances in several se-

mantic NLP tasks but lack of explanation

capabilities as for the limited interpretabil-

ity of the underlying acquired models. In

other words, tracing back causal connec-

tions between the linguistic properties of

an input instance and the produced clas-

sification is not possible. In this paper,

we propose to apply Layerwise Relevance

Propagation over linguistically motivated

neural architectures, namely Kernel-based

Deep Architectures (KDA), to guide argu-

mentations and explanation inferences. In

this way, decisions provided by a KDA

can be linked to the semantics of input ex-

amples, used to linguistically motivate the

network output.

Italiano. Le Deep Neural Network

raggiungono oggi lo stato dell’arte in

molti processi di NLP, ma la scarsa

interpretabilitá dei modelli risultanti

dall’addestramento limita la compren-

sione delle loro inferenze. Non é possibile

cioé determinare connessioni causali tra

le proprietá linguistiche di un esempio

e la classificazione prodotta dalla rete.

In questo lavoro, l’applicazione della

Layerwise Relevance Propagation alle

Kernel-based Deep Architecture(KDA)

é usata per determinare connessioni tra

la semantica dell’input e la classe di

output che corrispondono a spiegazioni

linguistiche e trasparenti della decisione.

1 Introduction

Deep Neural Networks are usually criticized as

they are not epistemologically transparent devices,

i.e. their models cannot be used to provide ex-

planations of the resulting inferences. An exam-

ple can be neural question classification (QC) (e.g.

(Croce et al., 2017)). In QC the correct category of

a question is detected to optimize the later stages

of a question answering system, (Li and Roth,

2006). An epistemologically transparent learning

system should trace back the causal connections

between the proposed question category and the

linguistic properties of the input question. For

example, the system could motivate the decision:

”What is the capital of Zimbabwe?” refers to a

Location, with a sentence such as: Since it is

similar to ”What is the capital of California?”

which also refers to a Location. Unfortunately,

neural models, as for example Multilayer Percep-

trons (MLP), Long Short-Term Memory Networks

(LSTM), (Hochreiter and Schmidhuber, 1997), or

even Attention-based Networks (Larochelle and

Hinton, 2010), correspond to parameters that have

no clear conceptual counterpart: it is thus difficult

to trace back the network components (e.g. neu-

rons or layers in the resulting topology) responsi-

ble for the answer.

In image classification, Layerwise Relevance

Propagation (LRP) (Bach et al., 2015) has been

used to decompose backward across the MLP lay-

ers the evidence about the contribution of indi-

vidual input fragments (i.e. pixels of the input

images) to the final decision. Evaluation against

the MNIST and ILSVRC benchmarks suggests

that LRP activates associations between input and

output fragments, thus tracing back meaningful

causal connections.

In this paper, we propose the use of a simi-

lar mechanism over a linguistically motivated net-

work architecture, the Kernel-based Deep Archi-

tecture (KDA), (Croce et al., 2017). Tree Ker-

nels (Collins and Duffy, 2001) are here used to

integrate syntactic/semantic information within a

MLP network. We will show how KDA input

nodes correspond to linguistic instances and by ap-

plying the LRP method we are able to trace back

causal associations between the semantic classifi-

cation and such instances. Evaluation of the LRP

algorithm is based on the idea that explanations
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improve the user expectations about the correct-

ness of an answer and shows its applicability in

human computer interfaces.

In the rest of the paper, Section 2 describes the

KDA neural approach while section 3 illustrates

how LRP connects to KDAs. In section 4 early

results of the evaluation are reported.

2 Training Neural Networks in Kernel

Spaces

Given a training set o ∈ D, a kernel K(oi, oj)
is a similarity function over D2 that corresponds

to a dot product in the implicit kernel space,

i.e., K(oi, oj) = Φ(oi) · Φ(oj). Kernel functions

are used by learning algorithms, such as Support

Vector Machines (Shawe-Taylor and Cristianini,

2004), to efficiently operate on instances in the

kernel space: their advantage is that the projec-

tion function Φ(o) = �x ∈ R
n is never explicitly

computed. The Nyström method is a factorization

method applied to derive a new low-dimensional

embedding x̃ in a l-dimensional space, with l ≪ n

so that G ≈ G̃ = X̃X̃⊤, where G = XX⊤ is

the Gram matrix such that Gij = Φ(oi)Φ(oj) =
K(oi, oj). The approximation G̃ is obtained using

a subset of l columns of the matrix, i.e., a selec-

tion of a subset L ⊂ D of the available exam-

ples, called landmarks. Given l randomly sam-

pled columns of G, let C ∈ R
|D|×l be the ma-

trix of these sampled columns. Then, we can re-

arrange the columns and rows of G and define

X = [X1 X2] such that:

G =

[

W X⊤
1
X2

X⊤
2
X1 X⊤

2
X2

]

=

[

C

X⊤
2
X1

]

where W = X⊤
1
X1, i.e., the subset of G that con-

tains only landmarks. The Nyström approxima-

tion can be defined as:

G ≈ G̃ = CW †C⊤ (1)

where W † denotes the Moore-Penrose inverse of

W . If we apply the Singular Value Decomposition

(SVD) to W , which is symmetric definite posi-

tive, we get W = USV ⊤ = USU⊤. Then it

is straightforward to see that W † = US−1U⊤ =

US− 1

2S− 1

2U⊤ and that by substitution G ≈ G̃ =

(CUS− 1

2 )(CUS− 1

2 )⊤ = X̃X̃⊤. Given an exam-

ple o ∈ D, its new low-dimensional representation

�̃x is determined by considering the corresponding

item of C as

�̃x = �cUS− 1

2 (2)

where �c is the vector whose dimensions contain

the evaluations of the kernel function between o

and each landmark oj ∈ L. Therefore, the method

produces l-dimensional vectors.

Given a labeled dataset, a Multi-Layer Percep-

tron (MLP) architecture can be defined, with a spe-

cific Nyström layer based on the Nyström embed-

dings of Eq. 2, (Croce et al., 2017).

Such Kernel-based Deep Architecture (KDA)

has an input layer, a Nyström layer, a possibly

empty sequence of non-linear hidden layers and a

final classification layer, which produces the out-

put. In particular, the input layer corresponds to

the input vector �c, i.e., the row of the C matrix

associated to an example o. It is then mapped to

the Nyström layer, through the projection in Equa-

tion 2. Notice that the embedding provides also

the proper weights, defined by US− 1

2 , so that the

mapping can be expressed through the Nyström

matrix HNy = US− 1

2 : it corresponds to a pre-

training stage based on the SVD. Formally, the

low-dimensional embedding of an input example

o, �̃x = �c HNy = �c US− 1

2 encodes the kernel

space. Any neural network can then be adopted:

in the rest of this paper, we assume that a tradi-

tional Multi-Layer Perceptron (MLP) architecture

is stacked in order to solve the targeted classifica-

tion problems. The final layer of KDA is the clas-

sification layer whose dimensionality depends on

the classification task: it computes a linear classi-

fication function with a softmax operator.

A KDA is stimulated by an input vector c which

corresponds to the kernel evaluations K(o, li)
between each example o and the landmarks li.

Linguistic kernels (such as Semantic Tree Ker-

nels (Croce et al., 2011)) depend on the syntac-

tic/semantic similarity between the x and the sub-

set of li used for the space reconstruction. We will

see hereafter how tracing back through relevance

propagation into a KDA architecture corresponds

to determine which semantic landmarks contribute

mostly to the final output decision.

3 Layer-wise Relevance Propagation in

Kernel-based Deep Architectures

Layer-wise Relevance propagation (LRP, pre-

sented in (Bach et al., 2015)) is a framework which

allows to decompose the prediction of a deep neu-

ral network computed over a sample, e.g. an im-
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age, down to relevance scores for the single input

dimensions, such as a subset of pixels.

Formally, let f : Rd → R
+ be a positive real-

valued function taking a vector �x ∈ R
d as input: f

quantifies, for example, the probability of �x char-

acterizing a certain class. The Layer-wise Rele-

vance Propagation assigns to each dimension, or

feature, xd, a relevance score R
(1)
d such that:

f(x) ≈
∑

dR
(1)
d (3)

Features whose score R
(1)
d > 0 (or d R

(1)
d < 0)

correspond to evidence in favor (or against) the

output classification. In other words, LRP allows

to identify fragments of the input playing key roles

in the decision, by propagating relevance back-

wards. Let us suppose to know the relevance score

R
(l+1)
j of a neuron j at network layer l+1, then it

can be decomposed into messages R
(l,l+1)
i←j sent to

neurons i in layer l:

R
(l+1)
j =

∑

i∈(l)

R
(l,l+1)
i←j (4)

Hence the relevance of a neuron i at layer l can be

defined as:
R

(l)
i =

∑

j∈(l+1)

R
(l,l+1)
i←j (5)

Note that 4 and 5 are such that 3 holds. In this

work, we adopted the ǫ-rule defined in (Bach et

al., 2015) to compute the messages R
(l,l+1)
i←j , i.e.

R
(l,l+1)
i←j =

zij

zj + ǫ · sign(zj)
R

(l+1)
j

where zij = xiwij and ǫ > 0 is a numerical stabi-

lizing term and must be small. Notice that weights

wij correspond to weighted activations of input

neurons. If we apply LRP to a KDA it implic-

itly traces the relevance back to the input layer,

i.e. to the landmarks. It thus tracks back syntac-

tic, semantic and lexical relations between a ques-

tion and the landmark and it grants high relevance

to the relations the network selected as highly dis-

criminating for the class representations it learned;

note that this is different from similarity in terms

of kernel-function evaluation as the latter is task

independent whereas LRP scores are not. Notice

also that each landmark is uniquely associated to

an entry of the input vector �c, as shown in Sec 2,

and, as a member of the training dataset, it also

corresponds to a known class.

4 Explanatory Models

LRP allows the automatic compilation of justifica-

tions for the KDA classifications: explanations are

possible using landmarks {ℓ} as examples. The

{ℓ} that the LRP method produces as the most ac-

tive elements in layer 0 are semantic analogues of

input annotated examples. An Explanatory Model

is the function in charge of compiling the linguis-

tically fluent explanation of individual analogies

(or differences) with the input case. The mean-

ingfulness of such analogies makes a resulting ex-

planation clear and should increase the user confi-

dence on the system reliability. When a sentence

o is classified, LRP assigns activation scores rsℓ to

each individual landmark ℓ: let L(+) (or L(−)) de-

note the set of landmarks with positive (or nega-

tive) activation scores.

Formally, an explanation is characterized by a

triple e = 〈s, C, τ〉 where s is the input sentence,

C is the predicted label and τ is the modality of the

explanation: τ = +1 for positive (i.e. acceptance)

statements while τ = −1 correspond to rejections

of the decision C. A landmark ℓ is positively acti-

vated for a given sentence s if there are not more

than k − 1 other active landmarks1 ℓ′ whose acti-

vation value is higher than the one for ℓ, i.e.

|{ℓ′ ∈ L(+) : ℓ′ �= ℓ ∧ rsℓ′ ≥ rsℓ > 0}| < k

A landmark is negatively activated when: |{ℓ′ ∈
L(−) : ℓ′ �= ℓ ∧ rsℓ′ ≤ rsℓ < 0}| < k. Positively

(or negative) active landmarks in Lk are assigned

to an activation value a(ℓ, s) = +1 (−1). For all

other not activated landmarks: a(ℓ, s) = 0.

Given the explanation e = 〈s, C, τ〉, a landmark

ℓ whose (known) class is Cℓ is consistent (or in-

consistent) with e according to the fact that the

following function:

δ(Cℓ, C) · a(ℓ, q) · τ

is positive (or negative, respectively), where

δ(C ′, C) = 2δkron(C
′ = C) − 1 and δkron is the

Kronecker delta.

The explanatory model is then a function

M(e, Lk) which maps an explanation e, a sub set

Lk of the active and consistent landmarks L for e

into a sentence in natural language. Of course sev-

eral definitions for M(e, Lk) and Lk are possible.

1
k is a parameter used to make explanation depending on

not more than k landmarks, denoted by Lk.
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A general explanatory model would be:

M(e, Lk) =



















































“ s is C since it is similar to ℓ ”

∀ℓ ∈ L+
k

if τ > 0

“ s is not C since it is different

from ℓ which is C ”

∀ℓ ∈ L−

k
if τ < 0

“ s is C but I don’t know why ”

if Lk = ∅

where L+
k

,L−

k
⊆ Lk are the partitions of landmarks

with positive (and negative) relevance scores in

Lk, respectively. Here we provide examples for

two explanatory models, used during the experi-

mental evaluation. A first possible model returns

the analogy only with the (unique) consistent land-

mark with the highest positive score if τ = 1
and lowest negative when τ = −1. The ex-

planation of a rejected decision in the Argument

Classification of a Semantic Role Labeling task

(Vanzo et al., 2016), described by the triple e1 =
〈’vai in camera da letto’, SOURCEBRINGING,−1〉,
is:

I think ”in camera da letto” IS NOT [SOURCE] of

[BRINGING] in ”Vai in camera da letto” (LU:[vai]) since

it’s different from ”sul tavolino” which is [SOURCE] of

[BRINGING] in “Portami il mio catalogo sul tavolino”

(LU:[porta])

The second model uses two active land-

marks: one consistent and one contradictory

with respect to the decision. For the triple

e1 = 〈’vai in camera da letto’, GOALMOTION, 1〉
the second model produces:

I think ”in camera da letto” IS [GOAL] of [MOTION] in

”Vai in camera da letto” (LU:[vai]) since it recalls ”al

telefono” which is [GOAL] of [MOTION] in ”Vai al telefono

e controlla se ci sono messaggi” (LU:[vai]) and it IS NOT

[SOURCE] of [BRINGING] since different from ”sul

tavolino” which is the [SOURCE] of [BRINGING] in

”Portami il mio catalogo sul tavolino” (LU:[portami])

4.1 Evaluation methodology

In order to evaluate the impact of the produced ex-

planations, we defined the following task: given a

classification decision, i.e. the input o is classified

as C, to measure the impact of the explanation e

on the belief that a user exhibits on the statement

“o ∈ C is true”. This information can be mod-

eled through the estimates of the following prob-

abilities: P (o ∈ C) that characterizes the amount

of confidence the user has in accepting the state-

ment, and its corresponding form P (o ∈ C|e),
i.e. the same quantity in the case the user is pro-

vided by the explanation e. The core idea is that

semantically coherent and exhaustive explanations

must indicate correct classifications whereas inco-

herent or non-existent explanations must hint to-

wards wrong classifications. A quantitative mea-

sure of such an increase (or decrease) in confi-

dence is the Information Gain (IG, (Kononenko

and Bratko, 1991)) of the decision o ∈ C. Notice

that IG measures the increase of probability corre-

sponding to correct decisions, and the reduction of

the probability in case the decision is wrong. This

amount suitably addresses the shift in uncertainty

−log2(P (·)) between two (subjective) estimates,

i.e., P (o ∈ C) vs. P (o ∈ C|e).

Different explanatory models M can be also

compared. The relative Information Gain IM
is measured against a collection of explanations

e ∈ TM generated by M and then normalized

throughout the collection’s entropy E as follows:

IM =
1

E

1

| TM |

∑

e∈TM

I(e)

where I(e) is the IG of each explanation2.

5 Experimental Evaluation

The effectiveness of the proposed approach has

been measured against two different semantic pro-

cessing tasks, i.e. Question Classification (QC)

over the UIUC dataset (Li and Roth, 2006) and Ar-

gument Classification in Semantic Role Labeling

(SRL-AC) over the HuRIC dataset (Bastianelli et

al., 2014; Vanzo et al., 2016). The adopted archi-

tecture consisted in a LRP-integrated KDA with 1

hidden layers and 500 landmarks for QC, 2 hid-

den layers and 100 landmarks for SRL-AC and a

stabilization-term ǫ = 10e−8.

We defined five quality categories and asso-

ciated each with a value of P (o ∈ C|e), as

shown in Table 1. Three annotators then inde-

pendently rated explanations generated from a col-

lection composed of an equal number of correct

and wrong classifications (for a total amount of

300 and 64 explanations, respectively, for QC and

SRL-AC). This perfect balancing makes the prior

probability P (o ∈ C) being 0.5, i.e. maximal en-

tropy with a baseline IG = 0 in the [−1, 1] range.

Notice that annotators had no information on the

2More details are in (Kononenko and Bratko, 1991)
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Category P (o ∈ C|e) 1−P (o ∈ C|e)
V.Good 0.95 0.05
Good 0.8 0.2
Weak 0.5 0.5
Bad 0.2 0.8

Incoher. 0.05 0.95

Table 1: Posterior probab. w.r.t. quality categories

Model QC SRL-AC

One landmark 0.548 0.669
Two landmarks 0.580 0.784

Table 2: Information gains for two Explanatory

Models applied to the QC and SRL-AC datasets.

system classification performance, but just knowl-

edge of the explanation dataset entropy.

5.1 Question Classification

Experimental evaluations3 showed that both the

models were able to gain more than half the bit re-

quired to ascertain whether the network statement

is true or not (Table 2). Consider:

I think ”What year did Oklahoma become a state ?” refers

to a NUMBER since recalls me ”The film Jaws was made in

what year ?”

Here the model returned a coherent supporting ev-

idence, a somewhat easy case as for the available

discriminative pair, i.e. ”What year”. The sys-

tem is able to capture semantic similarities even in

poorer conditions, e.g.:

I think ”Where is the Mall of the America ?” refers to a

LOCATION since recalls me ”What town was the setting for

The Music Man ?” which refers to a LOCATION.

This high quality explanation is achieved even if

with such poor lexical overlap. It seems that richer

representations are here involved with grammati-

cal and semantic similarity used as the main in-

formation involved in the decision at hand. Let us

consider:

I think ”Mexican pesos are worth what in U.S. dollars ?”

refers to a DESCRIPTION since it recalls me ”What is the

Bernoulli Principle ?”

Here the provided explanation is incoherent, as ex-

pected since the classification is wrong. Now con-

sider:

I think ”What is the sales tax in Minnesota ?” refers to a

NUMBER since it recalls me ”What is the population of

Mozambique ?” and does not refer to a ENTITY since

different from ”What is a fear of slime ?”.

3For details on KDA performance against the task, see
(Croce et al., 2017)

Although explanation seems fairly coherent, it is

actually misleading as ENTITY is the annotated

class. This shows how the system may lack of

contextual information, as humans do, against in-

herently ambiguous questions.

5.2 Argument Classification

Evaluation also targeted a second task, that is Ar-

gument classification in Semantic Role Labeling

(SRL-AC): KDA is here fed with vectors from

tree kernel evaluations as discussed in (Croce et

al., 2011). The evaluation is carried out over

the HuRIC dataset (Vanzo et al., 2016), including

about 240 domotic commands in Italian, compris-

ing of about 450 roles. The system has an accuracy

of 91.2% on about 90 examples, while the training

and development set have a size of, respectively,

270 and 90 examples. We considered 64 explana-

tions for measuring the IG of the two explanation

models. Table 2 confirms that both explanatory

models performed even better than in QC. This is

due to the narrower linguistic domain (14 frames

are involved) and the clearer boundaries between

classes: annotators seem more sensitive to the ex-

planatory information to assess the network deci-

sion. Examples of generated sentences are:

I think ”con me” is NOT the MANNER of COTHEME in

”Robot vieni con me nel soggiorno? (LU:[vieni])” since it

does NOT recall me ”lentamente” which is MANNER in

”Per favore segui quella persona lentamente (LU:[segui])”.

It is rather COTHEME of COTHEME since it recalls me

”mi” which is COTHEME in ”Seguimi nel bagno

(LU:[segui])”.

6 Conclusion and Future Works

This paper describes an LRP application to a KDA

that makes use of analogies as explanations of a

neural network decision. A methodology to mea-

sure the explanation quality has been also pro-

posed and the experimental evidence confirms the

effectiveness of the method in increasing the trust

of a user upon automatic classifications. Future

work will focus on the selection of subtrees as

meaningful evidences for the explanation, or on

the modeling of negative information for disam-

biguation as well as on more in depth investigation

of the landmark selection policies. Moreover, im-

proved experimental scenarios involving users and

dialogues will be also designed, e.g. involving fur-

ther investigation within Semantic Role Labeling,

using the method proposed in (Croce et al., 2012).
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