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Abstract

Spoken Language Understanding in Interactive
Robotics provides computational models of
human-machine communication based on the
vocal input. However, robots operate in specific
environments and the correct interpretation of
the spoken sentences depends on the physical,
cognitive and linguistic aspects triggered by the
operational environment. Grounded language pro-
cessing should exploit both the physical constraints
of the context as well as knowledge assumptions of
the robot. These include the subjective perception
of the environment that explicitly affects linguistic
reasoning. In this work, a standard linguistic
pipeline for semantic parsing is extended toward
a form of perceptually informed natural language
processing that combines discriminative learning
and distributional semantics. Empirical results
achieve up to a 40% of relative error reduction.

1 Introduction
End-to-end communication processes in natural language are
challenging for robots for the deep interaction of different
cognitive abilities. For a robot to react to a user command like
“take the book on the table” a number of implicit assumptions
should be met. First, at least two entities, a book and a table,
must exist in the environment and the speaker must be aware
of such entities. Accordingly, the robot must have access to
an inner representation of the objects, e.g. an explicit map of
the environment. Second, mappings from lexical references
to real world entities must be available. Grounding here [Har-
nad, 1990] links symbols (e.g. words) to the corresponding
perceptual information.

Spoken Language Understanding (SLU) in interactive dia-
logue systems acquires a specific nature, when applied in In-
teractive Robotics. Linguistic interactions are context aware
in the sense that both the user and the robot access and make
reference to the environment (i.e. entities of the real world).
In the above example, “taking” is the intended action when-
ever a book is actually on the table, so that the book on the
table refers to the whole argument. On the contrary, the com-
mand may refer to a “bringing” action, when no book is on
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Figure 1: Levels of representation in interactive robotics

the table and the book and on the table correspond to differ-
ent arguments. Robot interactions need thus to be grounded,
as meaning must correspond to the physical world and in-
terpretation is strongly interlaced with what is perceived, as
pointed out by psycho-linguistic theories [Tanenhaus et al.,
1995]. As a consequence, a correct interpretation is more
than a linguistically motivated mapping from an audio sig-
nal (e.g. the spoken command) to a meaning representation
formalism compatible with a linguistic theory (e.g., semantic
frames as discussed in [Fillmore, 1985]). Correctness implies
a physical coherence, as entities in the environment must be
known and the intended predicates must correspond to (pos-
sibly known) actions coherent with the environment too.

While traditional SLU mostly relies on linguistic informa-
tion contained in texts (i.e., derived only from transcribed
words), its application in Interactive Robotics depends on a
variety of other factors, including the perception of the en-
vironment. We can organize these factors into a layered
representation as shown in Figure 1. First, we rely on the
language level that governs linguistic inferences: it includes
observations (e.g. sequences of transcribed words) as well
as the linguistic assumptions of the speaker, here modeled
through frame-like predicates by which the inner lexicon can
be organized. Similarly, evidences involved by the robot’s
perception of the world must be taken into account. The
physical level, i.e. the real world, is embodied in the phys-
ical perception level: we assume that the robot has an im-
age of this world where the existence and the spatial proper-
ties of entities are represented. Such representation is built
by mapping the direct input of robot sensors into geomet-
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rical representations, e.g. metric maps. These provide a
structure suitable for anchoring the knowledge level. Here
symbols (i.e., knowledge primitives) are used to refer to real
world entities and their properties inside the domain level.
This comprises active concepts the robot sees realized in a
specific environment, plus general knowledge it has about
the domain. All this information plays a crucial role dur-
ing linguistic interactions. The integration of metric infor-
mation with notions from the knowledge level provides an
augmented representation of the environment, called seman-
tic map [Nüchter and Hertzberg, 2008]. In this map, the
existence of real world objects can be associated to lexi-
cal information, in the form of entity names given by a
knowledge engineer or spoken by a user for a pointed ob-
ject, as in Human-Augmented Mapping [Diosi et al., 2005;
Bastianelli et al., 2013]. It is worth noticing that the robot
itself is a special entity described at this knowledge level:
it does know its constituent parts as well as its capabilities,
that are the actions it is able to perform. In our case, we
introduce an additional level (namely platform level), whose
information is instantiated in a knowledge base called Plat-
form Model. In this way, a more complete perceptual knowl-
edge level is accessible, comprising both a model of the world
and a model of the robot itself. While SLU for Interactive
Robotics have been mostly carried out over the evidences spe-
cific to the linguistic level, e.g., in [Chen and Mooney, 2011;
Matuszek et al., 2012b; Bastianelli et al., 2014a], we argue
that such process should deal with all the aforementioned
layers in an harmonized and coherent manner. All linguis-
tic primitives, including predicates and semantic arguments,
correspond to perceptual counterparts, such as plans, robot’s
actions or entities involved in the underlying events.

The main contribution of this work is a SLU process that
depends not only on the linguistic information, but also on
the perceptual knowledge level. This process is expected to
produce interpretations that coherently mediate among the
world (with all the entities composing it), the robotic plat-
form (with all its inner representations and its capabilities)
and the pure linguistic level triggered by a sentence. To this
end, a discriminative approach to SLU has been adopted,
where grounded information is directly injected within the
learning algorithm, showing that the integration of linguistic
and perceptual knowledge improves the quality and robust-
ness of the overall interpretation process. Such goal has been
achieved by feeding the learning algorithms with a represen-
tation which is enriched with perceptual knowledge extracted
from a semantic map, through a grounding mechanism based
on linguistic evidences.

In the remaining of the paper, after a short survey on related
works (Section 2), we will describe and empirically evaluate
the proposed approach in Section 3 and 4, respectively.

2 Related Works
The interest in Spoken Language Understanding (SLU) for
Interactive Robotics has grown in the last decade. Re-
searchers with different backgrounds have proposed ap-
proaches to the problem, adopting techniques either drawing
from traditional Natural Language Processing, or specifically

designing both algorithms and representation formalisms.
In [Bos and Oka, 2007], SLU is performed in an integrated

fashion with the Automatic Speech Recognition (ASR), by
augmenting recognition grammar rules with semantic attach-
ments. Final interpretations are produced together with the
utterance transcription, and given according to a logic for-
malism based on λ-calculus. Final grounding is performed
through a theorem prover. Contextual Categorial Grammars
(CCG) are used in [Kruijff et al., 2007] to parse transcrip-
tions obtained through ASR. Statistical Learning techniques
have been applied to train specific semantic parsers. In
[Kollar et al., 2010], Conditional Random Fields are used
to sequentially label sentences to extract Spatial Descrip-
tion Clauses (SDCs), i.e. structures describing spatial rela-
tions. A maximum-likelihood approach is used to infer the
path to follow according to the spatial constraint induced by
the SDCs. In [Chen and Mooney, 2011], language descrip-
tions are paired with robotic actions, and Statistical Machine
Translation is applied to learn how to map the former into
the latter. Statistical graphical models are used in [Tellex et
al., 2011] to enable a mapping between words and syntac-
tic parse structures with concrete objects, places, paths and
events in the real world. The system assigns an interpreta-
tion to a sentence by finding the set of groundings that most
likely fits the syntactic structure. A beam search is performed
across all the entities and concepts described in a seman-
tic map, so that the final interpretation is jointly performed
with grounding. In [Matuszek et al., 2012b], a probabilis-
tic CCG is induced to map natural route instructions to robot
executable commands. Parameterization is performed with a
log-linear model over training data of sentences paired with
the corresponding commands, encoded using a specific robot
control language. In [Thomason et al., 2015], a weighted
CCG is used to parse utterances into λ-calculus expressions,
whose variables are grounded by querying a knowledge base
of facts about the environment. In addition, the system is able
to learn new referring expressions to known objects through
dialogs with the user. A similar kind of interaction was al-
ready presented in [Kaplan, 2000], where a four-legged robot
is instructed through dialog to acquire lexical references for
real objects. Once a new object is shown to the robot, the
acquiring process is handled by extracting structured visual
information from the image and pairing them with the refer-
enced word uttered by the human.

The approach we propose in this work makes use of
grounded features extracted from a semantic map about ex-
istence of entities in the environment, as well as spatial rela-
tions among them, e.g. distance. Such features are used to
drive the interpretation process of actions expressed in vocal
commands. While some of the aforementioned works did not
consider perceptual knowledge as a discriminating factor for
the interpretation, other works, such as [Tellex et al., 2011],
make a joint use of linguistic and perceptual information.
However, in their work perceptual knowledge never modifies
syntactic structures that can be wrongly generated from the
parser. Similarly to our work, the approach in [Kaplan, 2000;
Thomason et al., 2015] deals with the use of words unknown
to the robot to refer to objects, even though referents are ac-
quired through dialog. Differently, we make use of a mech-



anism based on Distributional Model of Lexical Semantics
[Sahlgren, 2006; Mikolov et al., 2013] together with phonetic
similarity functions to achieve robustness (as in [Bastianelli
et al., 2015]), while extracting grounded features through
the lexical references contained in the semantic map. No
further interactions are required, and the acquisition of syn-
onymic expressions for referring to entities is automatically
derived by reading large-scale document collections. It is
worth noticing that approaches of joint language and percep-
tion have been proposed to model the language grounding
problem when in presence of grounded attributes, as in [Ma-
tuszek et al., 2012a; Krishnamurthy and Kollar, 2013]. Al-
though the underlying idea of these works is similar to ours,
our aim is to produce the grounded interpretation at the pred-
icative level, that activates the robotic plan corresponding to
the action expressed in an utterance. The findings of such
works can be considered as complementary to our proposal.

3 Perceptually-informed Interpretation
In a house servicing robot scenario, learning for grounded NL
interpretation depends on a wide range of linguistic and per-
ceptual information: the former can be extracted from the ut-
terance transcriptions and refers to the overall linguistic com-
petence of the robot; the latter depends on the map of the cur-
rently perceived environment (e.g. the instance tab1 of the
class of tables) as this is referenced by linguistic symbols
(e.g. table). Grounding is thus needed during interpretation,
in terms of associations between language expressions and
elements from the semantic map.
Semantic Map. In our setting, a semantic map SM is a pair
〈M,E〉, where: M is a 2D metric map, i.e. the collection
of points representing the geometry of the environment as it
is directly perceived by visual and depth sensors; E is the
representation of entities existing and perceived in the en-
vironment, i.e. recognized by a process of semantic map-
ping. On entities e ∈ E, a function p(·) can be defined in
order to refer to their positions made available byM, so that
p(e) = 〈x1, y1〉 are the coordinates inM associated with the
entity e. Moreover, LR(·) is an additional function that as-
sociates to every e ∈ E the set of its lexical references we,
that are the expressions used to make linguistic reference to
e: it follows that LR(e) = {we|we is a name known to the
robot as a reference for e}. Notice that any we is a name
(i.e. a word or a complex expression) given to e during ei-
ther a knowledge engineering process or during a Human-
Augmented Mapping process. Other attributes for entities
e ∈ E may be present, but this information is not relevant
here and will be neglected.
Interpretation. In this work, we will rely on the Frame Se-
mantics theory [Fillmore, 1985] to give a linguistic and cogni-
tive basis to the interpretation of the actions encoded in user
utterances. Specifically, we will consider the formalization
adopted in FrameNet [Baker et al., 1998]. According to such
theory, actions, or more generally events, are modeled as se-
mantic frames. These are micro-theories about real world sit-
uations, e.g. the action of Taking. Each frame specifies also
the set of participating entities, called frame elements, e.g.
the THEME representing the object that is moved during the

action. For example, for the sentence “take the book on the
table”, a corresponding parsing can be [take]Taking [the book
on the table]THEME. Hence, given a sentence s as a sequence
of words wi, i.e. s = 〈w1, ..., wl〉, in our setting an interpre-
tation I(s) in terms of Frame Semantics determines a set of
pairs 〈fi,Argi〉 where fi is a frame (each anchored in the
text through a lexical unit LU, e.g. the verb take) and Argi

describes the set of arguments of the i-th frame evoked by
s. Notice that every argij ∈ Argi is a triple 〈asij , feij , shij〉
describing: (i) the span (asij) defined as subsequences of s,
so that the span asij = 〈wm, ...wn〉 with 1 ≤ m < n ≤ l;
(ii) the role label (i.e. frame element, feij) associated to the
spans and drawn from the vocabulary of frame elements FEi

defined by FrameNet for the current fi, i.e. ∀j feij ∈ FEi;
and (iii) the semantic head (shij) of the j-th argument of fi,
i.e. the meaning carrier word wk of the frame argument. In
the above example, where take is the LU:
I(s) = {〈Taking, {

〈〈take〉, LU, take〉,
〈〈the, book, on, the, table〉, THEME, book〉}〉}

Grounding. In order for the robot to execute the requested
command, the corresponding interpretation I(s) must be
grounded. In fact, the semantic frames provided by I(s) are
supposed to trigger grounded command instances as made
available by plans (or other behaviors) of the robot. Ground-
ing an instantiated frame in I(s) requires two steps. First,
the frame fi in I(s) must be mapped into a plan: as a con-
sequence, frame arguments must be explicitly associated to
their corresponding actors in the plan. Arguments of a plan
are directly mapped to frame elements by the so-called Plat-
form Model. Once a plan has been selected, its arguments
can be paired just with the lexical fillers shij (e.g. table) cor-
responding to frame elements and these can play the role of
anchors for the grounding onto the map: each lexical item
can be used to retrieve a corresponding instance e ∈ E in
the environment (e.g. tab1), given the naming associated
with it, e.g. we ∈ LR(tab1). This lexically-driven ground-
ing is carried out, by applying a lexicalized distance function
g(shij , we), that estimates how well the filler shij matches the
entity name we. Following [Bastianelli et al., 2015], g(·, ·)
is estimated as a linear combination between vector descrip-
tions of shij and we, and phonetic similarities. These lex-
ical semantic vectors are acquired through corpus analysis,
as in Distributional Lexical Semantic paradigms. They allow
to control references to elements modeling synonymy or co-
hyponymy, when lexical fillers, such as photo, are used to re-
fer to entities with different names, e.g. a picture. Phonetic
similarities support the interpretation process against possi-
ble ASR transcription errors, such as between pitcher and
picture. The maximization of the similarity g(·, ·) between
fillers and entities corresponds to the minimization of the dis-
tance between the corresponding lexical semantic vectors and
it can be extensively applied to optimize grounding. Given
the set E of candidate entities in a SM, the criterion OG for
grounding frame arguments argij is defined as follows:

OG(argij , SM) = {e ∈ E|∃we ∈ LR(e), g(shij , we) > τ}



where τ is an empirically estimated threshold obeying to
application-specific criteria. g(·, ·) measures the confidence
associated with individual groundings over the relevant lex-
ical vectors. Although different settings of OG (and there-
fore of g(·, ·)) can be designed ([Bastianelli et al., 2015]), this
mechanism is extensively used in this paper to locate candi-
date grounded entities in the SM and to code them into per-
ceptual features in the SLU process, hereafter described.

3.1 The Language Understanding Cascade
The proposed interpretation process is based on a cascade of
statistical classification steps, modeled as sequence labeling
tasks [Croce et al., 2012; Bastianelli et al., 2014a]. The
classification is applied to the entire sentence and is mod-
eled as the Markovian formulation of a structured SVM (i.e.
SVMhmm proposed in [Altun et al., 2003]). In general, this
learning algorithm combines a local discriminative model,
which estimates the individual observation probabilities of
a sequence, with a global generative approach to retrieve
the most likely sequence, i.e. tags that better explain the
whole sequence. In other words, given an input sequence
x = (x1 . . . xl) ∈ X of feature vectors x1 . . . xl, SVMhmm

learns a model isomorphic to a k-order Hidden Markov
Model, to associate x with a set of labels y = (y1 . . . yl) ∈ Y .

In this work, a sentence s is intended as a sequence of
words wi, each modeled through a feature vector xi and as-
sociated to dedicated labels yi, specifically designed for the
interpretation process I(s). Indeed, this process is obtained
through the cascade of the Action Detection and Argument
Labeling steps, where the latter is further decomposed in
the Argument Identification and Argument Classification sub-
steps. Each of these steps is mapped into a different SVMhmm

sequence labeling task. In the training phase, the SVM algo-
rithm is devoted in associating words to step-specific labels:
linear kernel functions are applied to different types of fea-
tures, ranging from linguistic to perception-based features,
and linear combinations of kernels are used to integrate in-
dependent properties. At classification time, given a sentence
s = (w1 . . . wl), the SVMhmm efficiently predicts the tag se-
quence y using a Viterbi-like decoding algorithm.

The Action Detection (AD) step aims at finding all frames
evoked by s and filling elements fi of the pairs in I(s). It
corresponds to a function fAD(s,PM ,SM ) as the labeling
process depends on linguistic information as well as knowl-
edge derived from the Platform Model (PM) and the percep-
tual knowledge derived from the Semantic Map (SM). In our
markovian setting, states reflect frame labels, so that the de-
coding proceeds by detecting lexical units and assigning the
proper frame, i.e. an action, in the form of a pair 〈wi, f〉, e.g.
take-Taking. A special null label ( ) is used to express the
status of all other words, e.g. the- or book- . Each word is
represented as a feature vector, defined as follows. Linguistic
features here include lexical features (such as the surface or
lemma of the current word and its left and right lexical con-
texts) and grammatical features (e.g. the POS-tag of the cur-
rent word or the contextual POS-tag n-grams). Information
about the robot coming from the PM is used to represent ac-
tions it is able to perform: these are mapped into frames (e.g.
through their corresponding LUs). Given a set of pairing be-

tween LUs and frames, for each word in a sentence, boolean
features are used to suggest possibly activated frames: in par-
ticular, if a word wi is a verb, then for every frame fj ∈ F i

we set to true the corresponding j-th feature for wi, where
F i is the subset of frames that can be evoked by wi as in the
PM. In addition, features derived from the perceptual knowl-
edge are used in the AD step as they are extracted from the
SM. These “perception-based” features combine the informa-
tion derived by the lexical grounding function with the syn-
tactic dependency tree associated with s. In particular, given
a verb vi and n(vi) = {wj |wj is a noun in the dependency
(sub)tree rooted in vi}, the following features are associated
to each word wj ∈ n(vi): (i) the number of nouns governed
by vi, i.e. |n(vi)|, (ii) the number of referred entities, i.e.
|
⋃

wj∈n(vi)
Γ(wj)|, where1:

Γ(wj) = {e ∈ E|∃we ∈ LR(e), g(wj , we) > τ}

and (iii) the average spatial distance between these entities
according to the SM.

For each identified frame fi ∈ I(s), the Argument
Identification (AI) step detects all its argument spans asij
with the corresponding semantic heads shij . This process
starts filling the missing elements of each j-th argument
argij ∈ Argi: more formally for a given frame fi, with
lexical unit LUi, the AI process can be summarized as the
function fAI(s,SM , fi, LUi). According to the proposed
markovian approach, given s and the detected frame fi,
states now denote argument boundaries between individual
argij ∈ Argi according to the IOB2 notation: the Begin (B),
Internal (I) or Outer (O) tags are assigned to each token. In
our running example, the final labeling is represented as O-
take B-the I-book I-on I-the I-table. In this step, the same
morpho-syntactic features adopted in the AD step are used
together with the frame fi under analysis. Moreover, dedi-
cated features derived from the perceptual knowledge are in-
troduced: a boolean feature is set to true for all and only
the nouns wj such that Γ(wj) 6= ∅, with Γ(wj) containing
candidate entities referred by wj , as above; for prepositions
pj , given their syntactic dependent wdep

j , a second boolean
feature is set to true iff Γ(wdep

j ) 6= ∅. The number of nouns
on the left and on the right of pj are also used as features
in its corresponding feature vector. Finally, for each prepo-
sition pj , we also retrieve its syntactic governor in the tree
wgov

i and measure the average Euclidean distance in SM be-
tween entities in Γ(wdep

j ) ∪ Γ(wgov
j ): if this score is under a

given threshold, a spatial feature is set to near, replacing the
default value of far.

In the Argument Classification (AC) step, given the frame
〈fi,Argi〉 ∈ I(s), each argij ∈ Argi is labeled through its
frame element feij , e.g. THEME to the argument the book on
the table. In this step states correspond to role labels. Clas-
sification here exploits only linguistic features, as grounded
information extracted from SM is not essential in this sub-
task. Morpho-syntactic features are extracted from s, and se-
mantic features, such as fi and IOB2 tags coming from the

1Γ also depends on the SM but it is omitted for simplicity.



previous stages (AD and AI), are considered. In addition, a
Distributional Model (DM) of Lexical Semantics is applied to
generalize the argument semantic head shij : the distributional
(vector) representation for shij is thus introduced to extend
the feature vector corresponding to each w ∈ asij . Given a
frame fi, the set of asij ∈ Argi, the AC function can thus be
written as: fAC(s, fi, LUi,Argi,DM ).

4 Experimental Evaluation
The contribution of perceptual information has been evalu-
ated in the semantic interpretation of utterances in a house
Service Robotics scenario. The evaluation is carried out using
the Human-Robot Interaction Corpus (HuRIC, [Bastianelli et
al., 2014b]) a collection of utterances annotated with seman-
tic predicates and paired with (possibly multiple) audio files.
Utterances are annotated with linguistic information of vari-
ous kinds (from morpho-syntax to semantic frames). HuRIC
contains 860 audio files for 527 sentences.

Since linguistic information was provided in HuRIC with-
out an explicit representation of the environment, we ex-
tended the corpus by pairing each utterance with a possible
reference environment: each s in HuRIC is paired with a gen-
erated semantic map (SM) reflecting the disposition of enti-
ties matching the interpretation, so that perceptual features
can be consistently derived for each s. Extended examples
are of the form 〈s, SM〉. The map generation process has
been designed to reflect real application conditions. First,
we built a reference knowledge base (KB) acting as domain
model and containing classes that describe the entities of a
generic home environment. Then, for each sentence s, the
corresponding SM is populated with the set of referred enti-
ties, plus a control set of 20 randomly-generated additional
objects, all taken from the KB. The naming function LR has
been defined simulating the lexical references introduced by
a process of Human-Augmented Mapping. The set of possi-
ble lexical alternatives (from which such LR draws) has been
designed to simulate free lexicalization of entities in the SM.
For every class name in the KB, a range of possible polysemic
variations has been defined, by automatically exploiting lexi-
cal resources, such as WordNet [Miller, 1995], or by corpus-
analysis. The final set has been then validated by human an-
notators. As an example the class table is referred through
the following variations: table, desk and board. The above
lexical variation allows augmenting the data set as each train-
ing sentence can be paired with more than one SM. For each
sentence s, two SMs have been generated: in one map each
entity (e.g. table) referred in s has the corresponding class
name (e.g. table), and another in which all entities are named
through lexical variations (e.g. desk). In this way, 1,054
examples have been generated. The distributional analysis
underlying g(·, ·) and the DM vectors has been acquired ac-
cording to a Skip-gram model [Mikolov et al., 2013], through
the word2vec tool. By applying the settings min-count=50,
window=5, iter=10 and negative=10 onto the UkWaC cor-
pus we derived 250 dimensional word vectors for more than
110, 000 words. The SVMhmm algorithm has been imple-
mented within the KeLP framework [Filice et al., 2015].

Table 1: Results w.r.t. the Action Detection step
P R F RER

Baseline 79.79% 68.56% 73.75% -
noPM/noSM 93.80% 95.56% 94.67% 0.0%

onlyPM 94.61% 95.57% 95.09% 7.9%
PerfG 96.25% 96.42% 96.33% 31.1%
LexG 95.82% 95.99% 95.91% 23.3%

Table 2: Results w.r.t. the Argument Identification step
P R F RER

Baseline 75.46% 93.21% 83,40% -
noPM/noSM 88.99% 92.56% 90.74% 0.0%

PerfG 94.48% 94.75% 94.62% 41.9%
LexG 94.02% 94.56% 94.29% 38.3%

Table 3: Results w.r.t. the Argument Classification step
P R F RER

Baseline 21.78% 21.78% 21.78% -
noDM 94.93% 94.93% 94.93% 0.0%

DM 95.31% 95.31% 95.31% 15.8%

Measures have been carried out on four tasks, all accord-
ing to a 5-fold evaluation schema. The first three correspond
to the individual interpretation steps, namely the AD, AI and
AC. In these tests, we assume that the input information of
the task corresponds to the gold annotation even if it depends
from a previous processing step. For each run a baseline has
been estimated to determine the task complexity when min-
imal information is considered. The last test concerns the
analysis of the end-to-end interpretation chain. It thus corre-
sponds to the ability of translating a vocal command into a
fully grounded and executable command.

The tasks in which perceptual knowledge is involved are
the AD and AI. We considered several settings: (i) no per-
ceptual information is considered (noPM/noSM); (ii) perfect
grounding information is assumed, that is gold information
about entities is provided instead of using any OG function
over the semantic map (PerfG); (iii) grounding information is
based on theOG set, built by the LR function introduced be-
fore (LexG). An additional run has been carried out for AD,
by considering only the Platform Model as the source of self-
knowledge (onlyPM). Results obtained in every run are re-
ported in terms of Precision (P), Recall (R) and F-Measure
(F) as a micro-statistics across the 5 folds. The contribution
of perceptual information is emphasized in terms of Relative
Error Reduction (RER) over F-measure w.r.t. the system set-
ting relying just on linguistic information (noPM/noSM).
Action Detection. The results about the AD step are reported
in Table 1. The set of frames involved by some HuRIC sen-
tence include 17 frames, with an average ambiguity of∼ 1.21
per lexical unit, considering that some LUs may evoke dif-
ferent frames (such as take vs. Taking or Bringing). The
baseline is obtained by choosing a frame randomly selected
among the possible ones suggested by each LU occurring
in a sentence. As shown in Table 1, the proposed label-
ing outperforms the baseline even when only linguistic in-
formation is employed (noPM/noSM). Further improvement
is achieved when perception comes into play, reaching a sig-
nificant 95.65% of F in the LexG setting. It is noticeable



Table 4: Results of the whole interpretation chain, w.r.t. three testing scenarios
Gold transcr., Gold Info. Gold transcr., CoreNLP ASR, CoreNLP

AD AI AC Ground. P R F P R F P R F
noPM/noSM noPM/noSM noDM Ident 43.7% 44.9% 44.3% 42.0% 41.3% 41.7% 32.9% 27.3% 29.8%
LexG LexG DM OGmax 74.5% 74.7% 74.6% 68.9% 65.8% 67.3% 59.3% 46.5% 52.1%

that the RER, whose upper bound is 31.1% as for the gold
grounding condition (PerfG), reaches 23.3% when the pro-
posed operational grounding method OG is employed. This
allows to recover from misclassifications of the noSM/noPM
setting, as in “take the mobile into the bedroom”, for which
the wrong TAKING frame is corrected to BRINGING when
perceptual evidences about the distance between the mobile
and the bedroom are made available.
Argument Identification. The results are reported in Ta-
ble 2. The baseline for the AI task exploits a purely syn-
tactic approach: given a frame and its corresponding lexical
unit LU, one argument for each branch of the dependency
tree rooted at a LU is assumed. Coordination structures have
been skipped. As it is clear from Table 2, perceptual knowl-
edge plays a crucial role for this task, as shown by the differ-
ence of ∼4 absolute points between the other settings and the
noPM/noSM one. Lexical grounding features help substan-
tially in locating argumental chunks of a sentence, especially
in ambiguous structures., e.g. left prepositional attachments.
For example, the fragment the book on the table may corre-
spond to one single argument in which on the table is a spa-
tial modifier of the book. But when no book is on any table
in the environment, it is more likely to correspond to two ar-
guments, i.e. THEME for the book and the destination role
(GOAL) for on the table.
Argument Classification. The AD task has been tested
across two runs: in the first one (DM) the word embeddings
computed over the UkWaC corpus is considered while in the
second one (noDM) it is neglected. The AC baseline as-
signs randomly, to each argument detected in the AI stage,
one frame element, among those used at least once in HuRIC
for that frame. Beside outperforming the baseline, further
improvements are achieved when distributional information
about words is adopted. The DM injects beneficial lexical
generalization into training data: frame element of arguments
whose semantic heads are close in the vector space are seem-
ingly tagged. For example, if the book in the training sentence
“take the book” is the THEME of a TAKING frame, similar ar-
guments for the same frame will receive the same role label
as notepad in “grab the notepad”.
Evaluating the whole interpretation chain. The last exper-
iment aims at measuring the performances of an end-to-end
cascade involving all the three AD, AI and AC steps. We also
performed a fourth grounding step that converts instantiated
semantic frames into executable commands, as discussed in
Section 3. As a consequence, the performances here are eval-
uated in terms of P, R and F over the fully grounded com-
mand, i.e. an action correctly specified together with all its
arguments. Two runs have been performed, whose results are
reported in Table 4. In the first run (the first row), neither
perception (noPM/noSM) nor any lexical smoothing (noDM)
are considered in the AD, AI and AC steps. In addition, lex-

ical identity (Ident) is also used to map the arguments of
the plan to entities of the semantic map. In a second run
(second row), information coming from the semantic map
(LexG) and lexical smoothing (DM) are both applied, and
a OGmax function is used to ground the arguments of the
plan, considering the sole entity maximizing the g(·, ·) func-
tion among the candidates. For every run, the system has
been tested in three scenarios. The first scenario reflects opti-
mal conditions for speech recognition and morpho-syntactic
parsing and the chain is fed with perfect transcriptions and
gold morpho-syntactic information. In a second more re-
alistic scenario, morpho-syntactic parsing is carried out by
the CoreNLP parser over correct transcriptions. Finally, the
last scenario reflects a real voice interaction where audio files
of the commands are processed by an off-the-shelf free-form
ASR engine, and the best transcription hypothesis is provided
to the interpretation chain. These last two settings reproduce
realistic working conditions, where intermediate errors can
be introduced. For completeness, the performances of the
CoreNLP and the adopted speech recognition engine are re-
ported below. The POS-tagging accuracy is of 93.98%, while
dependency parsing has an Unlabeled and Labeled Attach-
ment Score of 87.57% and of 85.20% respectively. Speech
recognition scored 79.82% of Precision@1 over the audio
commands from HuRIC. When perceptual knowledge from
the Semantic maps, Distributional Models and robust ground-
ing techniques are employed, the performances significantly
grow. This drop is also due to the difficulty in grounding plan
arguments over maps generated with lexical variability. The
average gain of ∼26 points of F1 testify the successful appli-
cation of our approach also in real application conditions.

5 Conclusions and Future Work
In service robotics, Spoken Language Understanding must
specifically model grounded NL interpretation dealing with
physical world and perceptual knowledge. In this paper,
we present a discriminative approach to SLU for Interactive
Robotics where, in addition to conventional linguistic fea-
tures, perceptual information is made available in the form
of a semantic map. Our approach has three advantages:
(i) we make the language understanding process sensitive
to grounded reasoning, (ii) we improve interpretation accu-
racy (up to 38% RER) with different potential interpretations
against different perceived environments and (iii) the out-
put representation of an interpreted command is already aug-
mented through the grounding of all linguistic elements. The
model proposed here still relies on discretized representations
of perceptual knowledge such as semantic maps. However, an
effort for directly integrating information coming from other
perceptual subsystems, e.g. vision, is enabled and could rep-
resent the next step of this work.



References
[Altun et al., 2003] Yasemin Altun, I. Tsochantaridis, and

T. Hofmann. Hidden Markov support vector machines. In
Proc. of ICML, 2003.

[Baker et al., 1998] Collin F. Baker, Charles J. Fillmore, and
John B. Lowe. The berkeley framenet project. In Proceed-
ings of ACL and COLING, pages 86–90, 1998.

[Bastianelli et al., 2013] Emanuele Bastianelli,
Domenico Daniele Bloisi, Roberto Capobianco, Fab-
rizio Cossu, Guglielmo Gemignani, Luca Iocchi, and
Daniele Nardi. On-line semantic mapping. In Advanced
Robotics (ICAR), 2013 16th International Conference on,
pages 1–6, Nov 2013.

[Bastianelli et al., 2014a] Emanuele Bastianelli, Giuseppe
Castellucci, Danilo Croce, Roberto Basili, and Daniele
Nardi. Effective and robust natural language understand-
ing for human-robot interaction. In Proceedings of ECAI
2014. IOS Press, 2014.

[Bastianelli et al., 2014b] Emanuele Bastianelli, Giuseppe
Castellucci, Danilo Croce, Roberto Basili, and Daniele
Nardi. Huric: a human robot interaction corpus. In Pro-
ceedings of LREC 2014, Reykjavik, Iceland, may 2014.

[Bastianelli et al., 2015] Emanuele Bastianelli, Danilo
Croce, Roberto Basili, and Daniele Nardi. Using semantic
models for robust natural language human robot interac-
tion. In AI* IA 2015, Advances in Artificial Intelligence,
pages 343–356. Springer International Publishing, 2015.

[Bos and Oka, 2007] Johan Bos and Tetsushi Oka. A spoken
language interface with a mobile robot. Artificial Life and
Robotics, 11(1):42–47, 2007.

[Chen and Mooney, 2011] David L. Chen and Raymond J.
Mooney. Learning to interpret natural language naviga-
tion instructions from observations. In Proceedings of the
25th AAAI Conference on AI, pages 859–865, 2011.

[Croce et al., 2012] D. Croce, G. Castellucci, and E. Bas-
tianelli. Structured learning for semantic role labeling. In-
telligenza Artificiale, 6(2):163–176, 2012.

[Diosi et al., 2005] Albert Diosi, Geoffrey R. Taylor, and
Lindsay Kleeman. Interactive SLAM using laser and ad-
vanced sonar. In Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation, ICRA
2005, April 18-22, 2005, Barcelona, Spain, pages 1103–
1108, 2005.

[Filice et al., 2015] Simone Filice, Giuseppe Castellucci,
Danilo Croce, and Roberto Basili. Kelp: a kernel-based
learning platform for natural language processing. In Pro-
ceedings of ACL2015: System Demonstrations, Beijing,
China, July 2015.

[Fillmore, 1985] Charles J. Fillmore. Frames and the seman-
tics of understanding. Quaderni di Semantica, 6(2):222–
254, 1985.

[Harnad, 1990] S. Harnad. The symbol grounding prob-
lem. Physica D: Nonlinear Phenomena, 42(1-3):335–346,
1990.

[Kaplan, 2000] F. Kaplan. Talking AIBO: First experimenta-
tion of verbal interactions with an autonomous four-legged
robot. In Proceedings of the CELE-Twente workshop on
interacting agents, 2000.

[Kollar et al., 2010] Thomas Kollar, Stefanie Tellex, Deb
Roy, and Nicholas Roy. Toward understanding natural lan-
guage directions. In Proceedings of the 5th ACM/IEEE,
HRI ’10, pages 259–266, Piscataway, NJ, USA, 2010.

[Krishnamurthy and Kollar, 2013] Jayant Krishnamurthy
and Thomas Kollar. Jointly learning to parse and perceive:
Connecting natural language to the physical world. TACL,
1:193–206, 2013.

[Kruijff et al., 2007] Geert-Jan M. Kruijff, H. Zender,
P. Jensfelt, and Henrik I. Christensen. Situated dialogue
and spatial organization: What, where. . . and why? Inter-
national Journal of Advanced Robotic Systems, 4(2), 2007.

[Matuszek et al., 2012a] Cynthia Matuszek, Nicholas
FitzGerald, Luke S. Zettlemoyer, Liefeng Bo, and Di-
eter Fox. A joint model of language and perception
for grounded attribute learning. In ICML. icml.cc /
Omnipress, 2012.

[Matuszek et al., 2012b] Cynthia Matuszek, Evan Herbst,
Luke S. Zettlemoyer, and Dieter Fox. Learning to parse
natural language commands to a robot control system. In
Jaydev P. Desai, Gregory Dudek, Oussama Khatib, and Vi-
jay Kumar, editors, ISER, volume 88 of Springer Tracts in
Advanced Robotics, pages 403–415. Springer, 2012.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Efficient estimation of word rep-
resentations in vector space. CoRR, abs/1301.3781, 2013.

[Miller, 1995] George A. Miller. Wordnet: A lexical
database for english. Commun. ACM, 38(11):39–41, 1995.
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Joachim Hertzberg. Towards semantic maps for mobile
robots. Robot. Auton. Syst., 56(11):915–926, 2008.

[Sahlgren, 2006] Magnus Sahlgren. The Word-Space Model.
PhD thesis, Stockholm University, 2006.

[Tanenhaus et al., 1995] M. Tanenhaus, M. Spivey-
Knowlton, K. Eberhard, and J. Sedivy. Integration
of visual and linguistic information during spoken
language comprehension. Science, 268:1632–1634, 1995.

[Tellex et al., 2011] S. Tellex, T. Kollar, S. Dickerson, M.R.
Walter, A.G. Banerjee, S. Teller, and N. Roy. Approaching
the symbol grounding problem with probabilistic graphi-
cal models. AI Magazine, 32(4), 2011.

[Thomason et al., 2015] Jesse Thomason, Shiqi Zhang, Ray-
mond Mooney, and Peter Stone. Learning to interpret nat-
ural language commands through human-robot dialog. In
Proceedings of the 2015 International Joint Conference on
Artificial Intelligence (IJCAI), pages 1923–1929, Buenos
Aires, Argentina, July 2015.


