12 research outputs found

    2D fuzzy Anti-de Sitter space from matrix models

    Get PDF
    We study the fuzzy hyperboloids AdS^2 and dS^2 as brane solutions in matrix models. The unitary representations of SO(2,1) required for quantum field theory are identified, and explicit formulae for their realization in terms of fuzzy wavefunctions are given. In a second part, we study the (A)dS^2 brane geometry and its dynamics, as governed by a suitable matrix model. In particular, we show that trace of the energy-momentum tensor of matter induces transversal perturbations of the brane and of the Ricci scalar. This leads to a linearized form of Henneaux-Teitelboim-type gravity, illustrating the mechanism of emergent gravity in matrix models.Comment: 25 page

    Dynamical and Quenched Random Matrices and Homolumo Gap

    Full text link
    We consider a rather general type of matrix model, where the matrix M represents a Hamiltonian of the interaction of a bosonic system with a single fermion. The fluctuations of the matrix are partly given by some fundamental randomness and partly dynamically, even quantum mechanically. We then study the homolumo-gap effect, which means that we study how the level density for the single-fermion Hamiltonian matrix M gets attenuated near the Fermi surface. In the case of the quenched randomness (the fundamental one) dominating the quantum mechanical one we show that in the first approximation the homolumo gap is characterized by the absence of single-fermion levels between two steep gap boundaries. The filled and empty level densities are in this first approximation just pushed, each to its side. In the next approximation these steep drops in the spectral density are smeared out to have an error-function shape. The studied model could be considered as a first step towards the more general case of considering a whole field of matrices - defined say on some phase space - rather than a single matrix.Comment: 15 pages, 2 figures; v2. substantial improvements, published in IJMP

    Solitons and excitations in the duality-based matrix model

    Full text link
    We analyse a specific, duality-based generalization of the hermitean matrix model. The existence of two collective fields enables us to describe specific excitations of the hermitean matrix model. By using these two fields, we construct topologically non-trivial solutions (BPS solitons) of the model. We find the low-energy spectrum of quantum fluctuations around the uniform solution. Furthermore, we construct the wave functional of the ground state and obtain the corresponding Green function.Comment: 13 pages,v2: new solutions constructed, title changed accordingl

    2D Calogero Model in the Collective-Field Approach

    Full text link
    We consider the large-N Calogero-Marchioro model in two dimensions in the Hamiltonian collective field approach based on the 1/N expansion. The Bogomol'nyi limit appears in the presence of the harmonic confinement. We investigate density fluctuations around the semiclassical uniform solution. The excitation spectrum splits into two branches depending on the value of the coupling constant. The ground state exhibits long-range order

    Solitons and giants in matrix models

    Get PDF
    We present a method for solving BPS equations obtained in the collective-field approach to matrix models. The method enables us to find BPS solutions and quantum excitations around these solutions in the one-matrix model, and in general for the Calogero model. These semiclassical solutions correspond to giant gravitons described by matrix models obtained in the framework of AdS/CFT correspondence. The two-field model, associated with two types of giant gravitons, is investigated. In this duality-based matrix model we find the finite form of the nn-soliton solution. The singular limit of this solution is examined and a realization of open-closed string duality is proposed.Comment: 17 pages, JHEP cls; v2: final version to appear in JHEP, 2 references added, physical motivation and interpretation clarifie
    corecore