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1 Introduction

There has been a great amount of work on noncommutative field theory on the fuzzy sphere

and similar compact quantum spaces. Part of their appeal stems from the fact that the

space of functions on these spaces has a simple group-theoretical structure and is finite-

dimensional, reflecting their finite symplectic volume. This leads to mathematically well-

controlled toy models for noncommutative field theory and geometry, see e.g. [1–10] and

references therein. However, most of the work so far has been for spaces with Euclidean

signature, and it would be desirable to know more about fuzzy spaces with Minkowski

signature.

In this paper, we study in detail 2-dimensional fuzzy de Sitter space dS2 and Anti-

de Sitter space AdS2, which are quantized homogeneous spaces with Minkowski signature

and non-vanishing curvature. Fuzzy (A)dS2 has been studied previously in [11–13]; see

also [14, 15] for related work on fuzzy noncompact coadjoint orbits, and [16] for a different

approach to fuzzyness on dS4. In the first part of this paper, we elaborate the space

of functions on these fuzzy hyperboloids, and provide explicit formulae for the square-

integrable wavefunctions corresponding to unitary irreducible representations of SO(2, 1).

For the discrete series representations we recover previous results obtained in [11], and
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for the principal continuous representations our results are new. This provides the basic

constituents for quantum field theory1 on fuzzy AdS2 and dS2. In particular, this also

allows to establish the required quantization map for the fuzzy geometry.

In a second part, we consider a matrix model which describes dynamical fuzzy AdS2

and dS2 spaces as brane solutions. As discussed in [19, 20], this leads to a dynamical

effective geometry on the branes, determined by a combination of the embedding geometry

of the brane and its Poisson structure. The present 2-dimensional example provides an

interesting toy model for emergent gravity, with a non-trivial curvature background. We

study the perturbations around the AdS2 solutions, and their dynamics in the presence of

matter. This is interesting because the extrinsic curvature of the brane leads to a coupling

of the linearized matrix perturbations to the energy-momentum tensor,2 as pointed out

in [21–23]. More precisely, the transversal perturbations of the brane couple to the trace of

the energy-momentum tensor of matter, due to the extrinsic curvature. It turns out that

the perturbations of the effective metric are governed by a linearized Henneaux-Teitelboim-

type gravity [24, 25], relating the trace of the energy-momentum tensor to the Ricci scalar.

This is remarkable, because it results directly from the underlying matrix model action,

without adding any gravity action. It provides a simple example for the mechanism of

emergent gravity in Yang-Mills matrix models. However, this result is restricted to the

linearized regime.

In 4 and higher dimensions, the dynamics of the effective geometry is complicated

due to a mixing between tangential and transversal brane perturbations [21, 22], which

prohibits a full understanding at present. A similar mixing is observed here, but we are able

to disentangle the coupled wave equations, and thereby essentially solve the perturbative

dynamics. Therefore the present 2-dimensional case should serve as a useful step towards

understanding the more complicated higher-dimensional case.

2 Classical two-dimensional hyperboloid

2.1 Geometry and isometry group

There are three types of two-dimensional non-compact spaces with constant curvature,

given by the Anti-de Sitter space AdS2, de Sitter space dS2 and the hyperbolic or

Lobachevsky plane H2. In this paper we discuss AdS2 and dS2, which can be naturally

realized as the one-sheeted hyperboloid embedded in R3 through

xaxb ηab = −(x1)2 − (x2)2 + (x3)2 = −R2. (2.1)

In terms of conformal coordinates −π/2 < σ < π/2 and π < τ ≤ π, the embedding of

classical Anti-de Sitter space AdS2 is given by

x1 = R
cos τ

cosσ
, x2 = R

sin τ

cosσ
, x3 = R tanσ. (2.2)

1For a discussion in the undeformed case see e.g. [17, 18] and references therein.
2Rather than just its derivative, as on trivially embedded branes.
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The induced metric is pseudo-Riemannian

gµν = ηab∂µx
a∂νx

b, ηab = diag(−1,−1, 1), µ, ν = σ, τ , (2.3)

gττ =
R2

cos2 σ
, gσσ = − R2

cos2 σ
, gστ = 0, (2.4)

with closed time-like circles3 around x3 = const . De Sitter space dS2 is obtained from

AdS2 by switching the roles of the time and space, thus changing the overall sign in the

metric. The circles x3 = const are then space-like, and there are no closed time-like curves.

Both AdS2 and dS2 admit the group SO(2, 1) or its cover SU(1, 1) as isometries,

generated by vector fields Ka, a = 1, 2, 3

K1= −i cosτ sinσ∂τ − i sinτ cosσ∂σ, K
2= −i sinτ sinσ∂τ + i cosτ cosσ∂σ, K

3= −i∂τ ,
(2.5)

which close su(1, 1) Lie algebra with respect to commutators

[Ka,Kb] = ifabc K
c (2.6)

or explicitly

[K1,K2] = −iK3, [K2,K3] = iK1, [K3,K1] = iK2. (2.7)

The Casimir operator of su(1, 1) Lie algebra is defined as

C = −(K1)2 − (K2)2 + (K3)2. (2.8)

As usual, it is convenient to introduce the ladder operators

K± = K1 ± iK2, (2.9)

which satisfy the commutation relations[
K3,K±

]
= ±K±,

[
K+,K−

]
= −2K3. (2.10)

Then unitary irreducible representations of SO(2, 1) are spanned by a basis |j,m〉 of weight

states, where j is related to the eigenvalue of the Casimir C, and m is the eigenvalue of

K3 and the action of K± on |j,m〉 produces a state with weight m± 1:

K3K±|j,m〉 = (m± 1)K±|j,m〉 ∼ |j,m± 1〉. (2.11)

A chain of states obtained by the successive action of K− operator terminates if there exist

state such that

K−|j,m0〉 = 0. (2.12)

Denoting this lowest weight by j = m0, it follows that

0 = K+K−|j, j〉 =
(
−C +K3(K3 − 1)

)
|j, j〉 ⇒ C = j(j − 1) (2.13)

3They can be avoided by passing to the universal cover of AdS2.
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Therefore the chain of states which span this irreducible lowest weight representation is

determined by the state |j, j〉 of lowest weight, via

|j, j +m〉 ∼ K+m|j, j〉. (2.14)

By analogy, the highest weight representation are obtained by interchanging roles of K+

and K− operators. If no lowest or highest weight state exists, then the normalisability

condition implies C < 0, and the states belong to the unitary irreducible continuous rep-

resentations.

In general, the resulting structure of irreducible representations is as follows:

K3|j,m〉 = m|j,m〉,
K+|j,m〉 = am+1|j,m+ 1〉,
K−|j,m〉 = am|j,m− 1〉, (2.15)

where

am =
√
m(m− 1)− j(j − 1). (2.16)

The finite-dimensional irreducible representations of SU(1, 1) are obtained for j ∈ −N/2.

They are not unitary, and correspond to the spin |j| representations V|j| of SU(2) with

C = −|j|(|j|+ 1). All unitary irreducible representations are infinite-dimensional, and fall

into one of the following classes4 [26]:

• The discrete series of the highest and the lowest weight representations

D+
j , j ∈ N>0 : Hj = {|j,m〉;m = j, j + 1, · · · ;m ∈ N },

D−j , j ∈ N>0 : Hj = {|j,m〉;m = −j,−j − 1, · · · ;−m ∈ N }, (2.17)

characterized by C = j(j − 1) ≥ 0.

• The principal continuous series

Ps, s ∈ R, 0 < s <∞, j =
1

2
+ is, Hj = {|j,m〉;m = 0,±1, ...;m ∈ Z} (2.18)

labeled by a real number s and C = −
(
s2 + 1

4

)
< −1/4.

• The complementary series

P cj , 1/2 < j < 1, j ∈ R, Hj = {|j,m〉;m = 0,±1, ...;m ∈ Z} (2.19)

with −1/4 < C < 0.

2.2 Functions and Poisson bracket

In order to carry out the quantization of (A)dS2, it is useful to organize the space of

functions on (A)dS2 in terms of irreducible representations of SU(1, 1). This provides at

the same time the basis of eigenfunctions of the invariant d’Alembertian �g,

�g =
1√
|g|
∂µ
√
|g|gµν∂ν =

cos2 σ

R2

(
∂2τ − ∂2σ

)
=
K12 +K22 −K32

R2
, (2.20)

4We only consider representations with integer weights for simplicity.
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which is related to the Casimir operator of su(1, 1). Here g = det(gµν), and gµν is inverse

of the metric. We can thus decompose any function on the hyperboloid into eigenfunctions

of �g,

�gφ+ αφ = 0 , (2.21)

and label the solutions by j and m as above. The solutions corresponding to the finite-

dimensional representations are realized by polynomial functions Pol(xa); they are of course

not normalizable on (A)dS2. The square-integrable functions corresponding to unitary

irreducible representations are given explicitly in terms of hyper-geometric functions

φjm=e−imτcosjσ

[
a 2F1

(
j+m

2
,
j−m

2
,
1

2
;sin2σ

)
+b sinσ 2F1

(
j+m+1

2
,
j−m+1

2
,
3

2
;sin2σ

)]
,

(2.22)

where

C = j(j − 1) = R2α (2.23)

is the Casimir. For AdS2, the scalar fields corresponding to positive or negative energy

unitary representations belong to the discrete representation D±j , with α > 0. Then the

equations for the lowest weight state have a unique solution

K3φjj = jφjj
K−φjj = 0

}
⇒ φjj ∼ eijτ cosj σ (2.24)

and the spectrum is non-degenerate. On the other hand the states given by (2.22) with

α < 0 belong to the continuous representations, with two-fold degenerate spectrum. These

are the physical scalar fields on de Sitter space dS2. Putting these together, we have the

following decomposition of functions on the hyperboloid (A)dS2

L2((A)dS2) = ⊕J≥1D+
J ⊕J≥1 D

−
J ⊕ 2

∫ ∞
0

dSPS (2.25)

along with the space of polynomial functions Pol(xa).

In the following we discuss fuzzy versions of these non-compact spaces, and their

associated spaces of functions. As a starting point, we note that the natural SO(2, 1)-

invariant volume element endows the hyperboloid with a non-degenerate symplectic form

ω =
R

κ cos2 σ
dτ ∧ dσ (2.26)

with dω = 0, introducing a scale perameter κ. Its inverse defines the Poisson bracket of

two functions

{f, g} =
κ cos2 σ

R
(∂τf∂σg − ∂σf∂τg) . (2.27)

We can now look for a quantization of this Poisson manifold M, cf. [33–36]. This means

that the algebra of functions C(M) should be mapped to a non-commutative (operator)

algebra A, such that the commutator is approximated by the Poisson bracket. In the

present case, the group-theoretical structure of (A)dS2 provides a natural and explicit
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quantization, in analogy to the case of the fuzzy sphere [1]. As a first step, we note that

the Poisson brackets of the embedding functions xa satisfy the Lie algebra of SO(2, 1)

{xa, xb} = κfabc x
c (2.28)

where fabc are structure constants of SO(2, 1). This implies as usual that the corresponding

Hamiltonian vector fields satisfy the same Lie algebra, and indeed it is easy to verify that

the SO(2, 1) vector fields (2.5) are given by

Ka =
i

κ
{xa, .} . (2.29)

3 Fuzzy hyperboloid

In analogy to the fuzzy sphere [1], we define fuzzy two-dimensional hyperboloid in terms

of three hermitian matrices (or operators) Xa, which are interpreted as quantization of the

embedding functions xa. In view of (2.28), we impose the following relations

[Xa, Xb] = iκ fabc X
c, (3.1)

where fabc are structure constants of the Lie algebra su(1, 1). Therefore the Xa are rescaled

su(1, 1) generators, and we assume that they act on a certain irreducible unitary represen-

tation Hj of the Lie algebra. We can then write the Casimir operator as

XaXb ηab = κ2j(j − 1). (3.2)

Since Hj is assumed to be irreducible, the Xa generate the full algebra A of operators

on Hj
A := End(Hj) ∼= Hj ⊗H∗j , (3.3)

where H∗j is dual representation of Hj . This algebra is an infinite-dimensional vector space,

which naturally carries an action of su(1, 1) by conjugation with the generators Xa:

Ka . Φ =
1

κ
[Xa,Φ], Φ ∈ A. (3.4)

We now specify the representation Hj . Since the matrices Xa should be interpreted as

quantized embedding functions xa of the hyperboloid and comparing the spectrum of X3

with the range of x3 ∈ 〈−∞,∞〉, we chooseHj to be a principal continuous representation,5

in accord with [11].

We can furthermore define an invariant scalar product

(Φ1,Φ2) = TrΦ†1Φ2, Φ1,Φ2 ∈ A. (3.5)

A contains in particular the polynomials generated by the Xa, where this trace diverges.

However, A also contains normalizable matrices corresponding to physical scalar fields,

5The complementary representation is rejected because it does not admit a semi-classical limit for fixed

curvature, as explained in section 3.2.
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which are of main interest here. Finding such normalizable matrices is equivalent to de-

composing A = Hj ⊗H∗j into irreducible unitary representations of su(1, 1). This problem

has been extensively studied in the literature [27–32]. In general, the states |JM〉 which

belong to a particular unitary irreducible representation in Hj1 ⊗Hj2 are given by

|JM〉 =
∑
m1,m2

C
j1 j2 J

m1m2M
|j1m1〉 ⊗ |j2m2〉 . (3.6)

Here the C’s are the Wigner coefficients, which vanish unless M = m1 +m2. In the special

case of Hj ⊗H∗j , we represent the state (3.6) as a matrix ΦJ
M

ΦJ
M =

∑
m1m2

D
j j J

m1m2M
|jm1〉〈jm2|, (3.7)

where the D’s vanish unless M = m1 −m2 ∈ Z. Since we chose the principal continuous

representation Hj ∼= Ps, one obtains the following decomposition of the space of functions

A into unitary modes [27–30]:

Ps ⊗ P ′s = ⊕J≥1D+
J ⊕J≥1 D

−
J ⊕ 2

∫ ∞
0

dSPS , (3.8)

along with the space of polynomial functions Pol(Xa). In the next section we will recover

this result and obtain the corresponding fuzzy wavefunctions explicitly, which solve the

eigenvalue equations

ηabK
a . Kb . ΦJ

M = − 1

κ2
�ΦJ

M =
ηab
κ2

[Xa, [Xb,ΦJ
M ]] = J(J − 1)ΦJ

M ,

K3 . ΦJ
M =

1

κ
[X3,ΦJ

M ] = MΦJ
M . (3.9)

3.1 Fuzzy wavefunctions

We can determine the fuzzy wavefunctions ΦJ
M explicitly, using their definition as irre-

ducible representations of SO(2, 1). As an element of the operator algebra A, the matrix

ΦJ
M acts on |jn〉 ∈ Hj as

ΦJ
M |jn〉 =

∑
m

D
j j J

mm−MM
|jm〉〈jm−M |jn〉 = D

j j J

n+MnM
|jn+M〉 . (3.10)

Defining the matrix DJ
M (K3) by its action on |jn〉

DJ
M (K3)|jn〉 = D

j j J

nn−MM
|jn〉 (3.11)
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and using defining property Γ(x+ 1) = xΓ(x) of Gamma function, we can express ΦJ
M for

integer M using (2.15) as

ΦJ
M = DJ

M (K3)

√
Γ(K3 −M − j + 1)Γ(K3 −M + j)

Γ(K3 − j + 1)Γ(K3 + j)
K+M =

= DJ
M (K3)

(
1√

(K3 − j)(K3 + j − 1)
K+

)M
, M > 0 (3.12)

ΦJ
M = K−

M

√
Γ(K3 −M − j + 1)Γ(K3 −M + j)

Γ(K3 − j + 1)Γ(K3 + j)
DJ
M (K3) =

=

(
K−

1√
(K3 − j)(K3 + j − 1)

)M
DJ
M (K3)†, M < 0 . (3.13)

To derive the final expressions (3.12) and (3.13) one applies the identity√
Γ(K3 −M − j + 1)Γ(K3 −M + j)

Γ(K3 − j + 1)Γ(K3 + j)
K+M =

(
1√

(K3 − j)(K3 + j − 1)
K+

)M
, (3.14)

which can be verified using

K+F (K3) = F (K3 − 1)K+ , (3.15)

which follows from (2.10). We note that the expressions (3.12) and (3.13) are hermitian

conjugates of each other. This reflects the fact that ΦJ
M
†

is a solution of (3.9) with eigen-

value −M if ΦJ
M is a solution with eigenvalue M .

The above considerations apply to any representation. For the discrete series repre-

sentations D+
J in (3.8) with J being integer, the basis of states is completely determined

by the minimal weight state annihilated by K−. Acting with K− on (3.12) we obtain

[K−,ΦJ
M ] =

√
(M − J)(M + J − 1)ΦJ

M−1

=
[
DJ
M (K3 + 1)

√
(K3 + j)(K3 − j + 1)

−DJ
M (K3)

√
(K3 −M + j)(K3 −M − j + 1)

]
×

×

(
1√

(K3 − j)(K3 + j − 1)
K+

)M−1
. (3.16)

Specializing this to the case M = J , we see that the expression in square bracket must

vanish

DJ
J (K3 + 1)

√
Γ(K3 + j + 1)Γ(K3 − j + 2)

Γ(K3 − J − j + 2)Γ(K3 − J + j + 1)
−

−DJ
J (K3)

√
Γ(K3 + j)Γ(K3 − j + 1)

Γ(K3 − J + j)Γ(K3 − J − j + 1)
= 0 . (3.17)
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Since K3 takes only integer values here, we can conclude that

DJ
J (K3) =

√
Γ(K3 − J + j)Γ(K3 − J − j + 1)

Γ(K3 + j)Γ(K3 − j + 1)
(3.18)

(up to normalization). Finally, for the lowest weight state in D+
J using (3.14) we obtain

ΦJ
J =

(
1

(K3 − j)(K3 + j − 1)
K+

)J
(3.19)

in agreement with findings of [11, 12]. The highest weight state in D−J is given by hermitian

conjugate of (3.19).

For the principal continuous representation PS with J = 1/2+iS in (3.8), the matrices

DJ
M are solutions of second order difference equation obtained from (3.16) applying K+

on it:[
(M − J)(M + J − 1)− (K3 − j)(K3 + j − 1)− (M −K3 − j)(M −K3 + j − 1)

]
CJM (K3)

=
√

(K3 − j)(K3 + j − 1)(M −K3 + j)(M −K3 − j + 1)CJM (K3 − 1) +√
(K3 + j)(K3 − j + 1)(M −K3 − j)(M −K3 + j − 1)CJM (K3 + 1). (3.20)

Here we find it convenient to write DJ
M as

DJ
M (K3) = CJM (K3)eiπK

3
, (3.21)

where CJM (K3) is a matrix with elements given by the Wigner coefficients for the principal

continuous representations of su(1, 1) in (3.8). This can be seen after noting that this second

order difference equation is a special case of equation for the general Wigner coefficients as

found in [31, 32]. Finally, we can express CJM in terms of two independent solutions6

CJM (K3) =

√
Γ(M −K3 − j + 1)Γ(M −K3 + j)

Γ(K3 + j)Γ(K3 − j + 1)
×

×
aGJM (K3) + bG1−J

M (K3)

Γ(M −K3 + J − j + 1)Γ(M −K3 − J − j − 2)
. (3.22)

where GJM (K3) is the hypergeometric series

GJM (K3) =3F2(J, 2j + J − 1, J −M ;K3 + J + j −M, 2J), (3.23)

defined by

3F2(a, b, c; d, e) =

∞∑
k=0

Γ(a+ k)Γ(b+ k)Γ(c+ k)Γ(d)Γ(e)

k!Γ(a)Γ(b)Γ(c)Γ(d+ k)Γ(e+ k)
. (3.24)

To summarize, we have obtained explicit matrices ΦJ
M of the form

ΦJ
M =

{
F JM (X3)X+M , M ≥ 0

F̃ JM (X3)X−
M
, M ≤ 0

, (3.25)

6The solutions are degenerate in the case of J being integer.
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realizing the decomposition (3.8) of A = Hj ⊗H∗j into unitary representations of SO(2, 1).

They form an orthonormal basis for the inner product defined by the trace (3.5). This is

in one-to-one correspondence with the decomposition (2.25) of classical functions

φJM =

{
fJM (x3)x+

M
, M ≥ 0

f̃JM (x3)x−
M
, M ≤ 0

(3.26)

with x+ = x1+ ix2 on the hyperboloid. Due to the relation with the Casimir, the spectrum

of matrix d’Alembertian 1
κ2
� in (3.9) and the classical d’Alembertian (2.20) coincide.

Including also the space of polynomial functions Pol(Xa), this is the basis for interpreting

the matrix algebra A as quantized algebra of functions over hyperboloid.

3.2 Semi-classical limit

Now consider the classical hyperboloidM as a Poisson manifold equipped with the Poisson

structure (2.27). The quantization of such a Poisson manifold is defined in terms of a

quantization map Q, which is an isomorphism of vector spaces from the space of functions

C(M) on M to some (operator) algebra A

Q : C(M)→ A, f(x) 7→ Q(f(x)) (3.27)

which is compatible with the Poisson structure {f, g} = θµν∂µf∂νg, satisfying

Q(fg)−Q(f)Q(g) → 0 and (3.28)

1

θ

(
Q(i{f, g})− [Q(f),Q(g)]

)
→ 0 as θ → 0. (3.29)

Clearly Q ≡ Qθ depends on the Poisson structure θ, and the limit θ → 0 is understood in

some appropriate way; for a more mathematical discussion we refer e.g. to [33–36]. As Q is

an isomorphism of vector spaces,7 one can then define the semi-classical limit of some fuzzy

wavefunction F ∈ A as the inverse f = Q−1(F ) of the quantization map. This is consistent

as θ → 0, provided commutators are replaced by the appropriate Poisson brackets, and

higher order terms in θ are neglected.

In general, there is no unique way of defining Q. However in the case at hand, there

is a natural definition of Q, based on the decomposition of C(M) and A into irreducible

representations of SO(2, 1). Given the corresponding orthonormal bases ΦJ
M and φJM of A

resp. C(M) as obtained above, we define

Q(φJM ) = ΦJ
M , (3.30)

so that Q is an isometry for the unitary representations. This can be extended to the poly-

nomials Pol(xa), corresponding to finite-dimensional non-unitary irreducible representa-

tions of SO(2, 1). However these are not normalizable, and the normalization of Q(Pol(xa))

7Sometimes one only requires Q to be an isomorphism only on the space of functions with momenta

below some UV cutoff.

– 10 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
0

must be fixed in another way. Since we want to interpret the matrices Xa, a = 1, 2, 3 as a

quantized embedding coordinates xa, a = 1, 2, 3, we define

Q(xa) = Xa . (3.31)

Comparing the embedding equation xaxa = −R2 with the Casimir constraint XaXa =

κ2j(j − 1) (3.2), we are led to impose

κ2
(
s2 +

1

4

)
= R2 = const, (3.32)

using j = 1/2 + is for the principal continuous representation Hj . Therefore the semi-

classical limit κ → 0 implies8 s → ∞. This is the analog of N = dimH → ∞ in the case

of fuzzy sphere.

To establish9 the required properties of Q, we recall that all fuzzy wavefunctions can

be written in the following “normal form” (3.25)

ΦJ
M = F JM (X3)X+M , φJM = fJM (x3)x+

M
, M ≥ 0 (3.33)

and similarly for M < 0. We claim that

lim
κ→0

F JM = fJM (3.34)

as functions in one variable. To see this, observe that in the limit κ → 0 following rela-

tions hold

lim
κ→0

1

κ
[X±, F (X3)] = ∓F ′(X3)X±, (3.35)

lim
κ→0

1

κ
[X−, X+M ] = 2MX3X+M−1, (3.36)

as a consequence of the Lie algebra relations. In the classical case, the corresponding

relations are

i{X±, f(x3)} = ∓f ′(x3)x±, (3.37)

i{x−, x+M} = 2Mx3x+
M−1

. (3.38)

Therefore the action of the matrix Laplacian (3.9) on ΦJ
M in the limit κ→ 0

lim
κ→0

1

κ2
�ΦJ

M =

−
[(
X32 +R2

)
F ′′

J
M (X3) + 2(M + 1)X3F ′

J
M (X3) +M(M + 1)F JM (X3)

]
X+M (3.39)

has precisely the same form as the action of the classical Laplacian

R2�gφ
J
M = − 1

κ2
{x+, {x−, φJM}}+

1

κ2
{x3, {x3, φJM}}+

i

κ
{x3, φJM} = −J(J − 1)φJM . (3.40)

8This is also the reason why the complementary series has been rejected for Hj .
9Our aim is to establish and clarify the required properties, without claiming mathematical rigor.

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
1
0
0

This implies (3.34) up to normalization, and allows to define Q in such a way that

Q(fJM (x3)x+
M

) → fJM (X3)X+M as κ → 0. In particular, this provides the appropriate

definition of Q for the principal continuous representation PS (which is doubly degenerate),

as well as for the finite-dimensional polynomials which are not normalizable.

Now it is easy to see that Q respects the algebra structure and the Poisson bracket

in the limit κ → 0. Consider the product of two matrix modes as above, expanded up to

leading order in κ

Q(ΦJ
M )Q(ΦJ ′

M ′) = ΦJ
MΦJ ′

M ′ = F JMX
+MF J

′
M ′X

+M
′
= F JM [X+M , F J

′
M ′ ]X

+M
′
+ F JMF

J ′
M ′X

+M+M ′

= (F JMF
J ′
M ′ −MκF JMF

′J ′
M ′ + o(κ2))X+M+M ′

, (3.41)

for M,M ′ ≥ 0. Then (3.28) follows immediately using (3.34). Subtracting the same

computation with the factors reversed, (3.29) follows. A similar computation applies to

modes with mixed or negative M . ThereforeQ is indeed a quantization map for our Poisson

structure. Using the decomposition of A into the above modes, analogous statements can

be made for the de-quantization map Q−1, which provides the semi-classical limit of the

fuzzy wavefunctions.

Finally, consider the trace of some normalizable wavefunctions with weight M = 0,

2πTrΦJ†
0 ΦJ

0 = 2π

∞∑
m=−∞

F J∗0 (κm)F J0 (κm)
κ→0→ 2πκ−1

∫
dx3fJ

∗
0 (x3)fJ0 (x3)

=

∫
ω φ∗J0φ

J
0 , (3.42)

using the explicit form of Hj = Ps (2.18), where ω is the symplectic form (2.26). This

computation is easily generalized to show that

2πTrQ(f)Q(g)
κ→0→

∫
ω fg (3.43)

as long as the integrals are bounded. This is guaranteed for the spaces of unitary wave-

functions discussed above.

To summarize, in the semiclassical limit ∼ defined as de-quantization map expanded

up to leading order in κ, we can use the following relations

ΦJ
M ∼ φJM , Xa ∼ xa, [F,G] ∼ i{Q−1(F ),Q−1(G)}, [Xa, ] ∼ i{xa, }, 2πTr ∼

∫
ω (3.44)

which we use in the following sections.

4 Dynamical matrix models

Consider now three hermitian matrices Xa = (Xa)† ∈ Mat(∞,C) for a = 1, 2, 3, which

transform in the basic 3-dimensional representation of SO(2, 1). Then the most general

matrix model up to order 4 which is invariant under the SO(2, 1) symmetry as well as

translations Xa → Xa + ca1l has the form

S[X] = − 2π

g2YM
Tr
(

[Xa, Xb][Xa, Xb] + ig3fabc[X
a, Xb]Xc

)
(4.1)
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for suitable constants, where embedding indices are raised and lowered with ηab. The

matrices Xa are understood to have dimension length, and accordingly [gYM ] = L2. This

model is invariant under SO(2, 1) rotations, translations as well as gauge transformations

Xa → UXaU−1 for unitary operators U . The equations of motion are obtained as

4�Xa = 3ig3 f
a
bc[X

b, Xc] ,

� ≡ [Xa, [Xa, .]]. (4.2)

Now consider the ansatz10

Xa = κKa, a = 1, 2, 3 (4.3)

in terms of rescaled generators of a unitary irreducible representation of SO(2, 1). Then

[Xa, Xb] = iκ fabc X
c,

XaXa = κ2C|H = −κ2(s2 +
1

4
)1lH = −R21lH ,

�Xa = κ2C|adXa = 2κ2Xa (4.4)

where C is the quadratic Casimir of SO(2, 1), and κ,R are positive numbers. As discussed

before, we take H = Hj to be the principal continuous series representation, so that

Xa ∈ End(H) and

R2

κ2
=

(
s2 +

1

4

)
= −C|H . (4.5)

Thus the equations of motion (4.2) are solved by this ansatz provided

4κ2 + 3κg3 = 0. (4.6)

This is a quadratic equation in κ which we assume to have a positive solution.

The effective matrix geometry. Let us discuss the geometry of the fuzzy brane so-

lutions in the matrix model in the semi-classical limit, following [19, 20]. Recall that the

matrices Xa are interpreted as quantized Cartesian embedding functions

Xa ∼ xa : M ↪→ R3 . (4.7)

The induced metric on M is given by

gµν = ∂µx
a∂νxa . (4.8)

For the hyperboloid solutions under consideration xaxa = −R2 holds, so that the induced

metric is that of AdS2. However, we are interested in the effective metric which governs

10Of course the matrix model action is divergent on this background, however this is not a problem. We

only need to require that the perturbations lead to a finite variation of the action. This could be taken into

account by subtracting certain background terms, which we do not write down for brevity.
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physical fields in the matrix model. To identify the effective metric in the semi-classical

limit, we note that the kinetic term e.g. for a scalar field Φ in the matrix model11 arises

from an action of the form

S[φ] = − 2π

2g2YM
Tr [Xa,Φ][Xa,Φ] ∼ 1

2g2YM

∫
ω θµµ

′
θνν

′
gµ′ν′ ∂µφ∂νφ

= − 1

2gYM

∫
d2x
√
|G| e−σ/2Gµν∂µφ∂νφ = −1

2

∫
d2x
√
|G| e−σ/2Gµν∂µϕ∂νϕ, (4.9)

using the semi-classical correspondence rules (3.44). Here the scalar fields are made di-

mensionless via Φ ∼ φ = g
1/2
YM ϕ, and

ω =
1

2
θ−1µν dx

µdxν ,

Gµν = −g−2YM θµµ
′
θνν

′
gµ′ν′ = e−σgµν ,

e−σ = g−2YM |det θµν ||det gµν |. (4.10)

Therefore scalar fields couple to the effective metric given by Gµν . Note the explicit minus

in the definition of Gµν , which is in contrast to the higher-dimensional case discussed

in [19, 20]. The correct sign can be obtained from the action (4.1) resp. (4.9), which

must have the form S =
∫
dt(T − V ). For the action (4.1) it means that the effective

metric is indeed that of AdS2, while fuzzy dS2 can be obtained by changing the overall

sign of the action. This freedom to change the sign is possible only in the case of signature

(−+) in 2 dimensions. Note also that for 2-dimensional branes, the conformal factor of

the effective metric is not fixed by the above scalar field action, due to the Weyl symmetry

Gµν → eαGµν . Here we choose (4.10) for simplicity; our main goal is to illustrate how such

an effective metric responds to matter perturbations in the present matrix model.

The relation G ∼ g is particular for 2 dimensions, and can be seen in coordinates

where gµν = diag(−1, 1) at some given point p ∈ M2. Consider the point pN = (R, 0, 0)

in the homogeneous AdS2 space. Its tangent space is parallel to the (x2x3) plane, so that

we can use xµ = (x2, x3) as local coordinates. In these “normal embedding” coordinates

we have gµν = diag(−1, 1) at pN , and θ23 = {x2, x3} = κf231 R = κR. On the other hand

θµν = {xµ, xν} = gYMe
−σ/2εµν using (4.10), and we obtain

e−σ/2 = |g−1YM x1| = g−1YMκR. (4.11)

We note that the matrix Laplace operator (4.4) for the unperturbed hyperboloid back-

ground is related to the geometric Laplace operator in the semi-classical limit12

�Φ ∼ −{xa, {xa, φ}} = g2YM
1√
G
∂µ(
√
GGµν∂νφ) = g2YM�Gφ . (4.12)

11For example, the radial components of the non-abelian fluctuations on a stack of coincident branes

realize such scalar fields. A detailed analysis of general abelian perturbations will be given below.
12Although such a relation holds very generally in the higher-dimensional case [19, 20], it is restricted to

eσ = const in 2 dimensions; for a general formula in 2 dimensions see [37]. Here we need the Laplacian only

for the unperturbed backgrounds, where (4.12) is sufficient.
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Finally, it is easy to add fermions the matrix model, via the action

S[ψ] = Tr Ψ ( /D +mψ)Ψ . (4.13)

Here /DΨ = Γa[X
a,Ψ] is the matrix Dirac operator, and

Ψ =

(
ψ1

ψ2

)
, ψα ∈ A (4.14)

is a 2-component spinors of SO(2, 1), and Γa satisfy the Clifford algebra of SO(2, 1),

ΓaΓb + ΓbΓa = 2ηab . (4.15)

In the semi-classical limit, the Dirac operator can be written as

/DΨ = Γa[X
a,Ψ] ∼ iγ̃µDµ (4.16)

where the γ̃ν = θνµ∂νx
a Γa satisfy the Clifford algebra associated with the effective metric

{γ̃µ, γ̃ν} = 2Gµν . (4.17)

This implies that the fermions also couple to the effective metric Gµν .

In general, any physical field in the matrix model with background Xa as above arises

either as fluctation of the matrices around the background, or from the fermionic matrices

Ψ. In any case, it can be interpreted in terms of functions on the braneM. Since derivatives

of these fields can only arise from commutators with the background matrices, the kinetic

term for bosonic fields arises from a double commutator term, which is governed by Gµν in

the semi-classical limit as shown above. The same conclusion holds for non-abelian gauge

fields and fermions, as established in more detail in [19, 20]. Therefore Gµν should be

identified as gravitational metric on the brane. Gauge transformations in the matrix model

correspond to symplectomorphisms in the semi-classical limit, which form a subgroup of

the diffeomorphism group, and can be gauge-fixed as in a U(1) gauge theory. The full

diffeomorphism group plays no role in the matrix model, since the geometry arises in a

partially gauge-fixed way (essentially in harmonic gauge with respect to xµ ∼ Xµ, cf. [19,

20]) on sub-manifolds embedded in an un-physical higher-dimensional Minkowski space. In

the semi-classical limit of course, one may express the geometry in any coordinates, thus

re-introducing a redundant diffeomorphism invariance.

5 Fluctuating AdS2 and gravity

We introduce some useful geometrical structures which apply to general M2 ⊂ R3. The

“translational currents”

Jaµ = ∂µx
a (5.1)

span the tangent space of M2 ⊂ R3, while

Ka
µν = ∇[g]µJ

a
ν = Ka

νµ (5.2)
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characterizes the extrinsic curvature and is normal to the brane with respect to the em-

bedding metric,

JaµKaνη = 0 . (5.3)

In particular,

Ka = Ka
µνG

µν = �Gx
a (5.4)

is a normal vector13 to M2 ⊂ R3. For the present AdS2 solution, one can easily compute

the curvature of the connection ∇[G] = ∇[g] ≡ ∇,

Ka
µν = R−2gµνx

a =
1

2
GµνK

a,

Ka = 2e−σR−2xa = −Ric[G]xa (5.5)

This is consistent with �gx
a = 2

R2x
a on AdS2. The Riemann curvature tensor can be

obtained e.g. from the Gauss-Codazzi theorem, and is given by

Rµνη
ρ = −R−2(gµηδρν − gνηδρµ),

Ricµν =
1

2
Ric[g] gµν =

1

2
Ric[G] Gµν ,

Ric[g] = −2R−2, Ric[G] = −2R−2e−σ (5.6)

using (4.11), and recalling xaxa = −R2. Using the above relations along with (4.4), the

embedding functions xa satisfy

(�G + Ric[G])xa = 0 . (5.7)

Now consider small fluctuations around the solutions X̄a of the above matrix model,

parametrized as

Xa = X̄a +Aa(X̄) . (5.8)

These fluctuations can be interpreted in different ways. First, one can decompose the Aa

into tangential and one radial components, analogous to the well-known case of the fuzzy

sphere [7]. Then the radial component can be interpreted as scalar field on M2, and the

tangential components in terms of (noncommutative) gauge fields. This interpretation is

certainly appropriate for the non-abelian components, which arise on a stack of n coinciding

such branes. However since the trace- U(1) components change the effective metric Gµν on

M2, it is more natural to interpret them in terms of geometrical or gravitational degrees of

freedom; note that there is no charged object under this U(1). In this section we elaborate

some aspects of the resulting 2-dimensional effective or ”emergent“ gravity.14

13In general, this holds for �g rather than �G, but in the 2-dimensional case both statements are true.
14The word “emergent“ indicates that the metric arises from other, more fundamental degrees of freedom.
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In the semi-classical limit, the matrix model action expanded to second order in Aa

around the basic AdS2 solution is given by

S[X] ∼ 2

g2YM

∫
ω

(
{xa,Ab}{xa,Ab}+ {xa,Ab}{Aa, xb}+

(
κ+

3g3
2

)
fabc{Aa,Ab}xc

)

=
2

g2YM

∫
ω

(
g2YMAb�GAb − f2 +

(
2κ+

3g3
2

)
fabcx

c{Aa,Ab}

)

=
2

g2YM

∫
ω
(
g2YMAb�GAb − f2

)
(5.9)

dropping the linear as well as the fabc term which vanish due to the equations of motion

(4.6), and using∫
{xa,Ab}{Aa, xb} = −

∫
Ab{xa, {Aa, xb}} =

∫
Ab({Aa, {xb, xa}}+ {xb, {xa,Aa}}}

=

∫
(κfabc{Aa,Ab}xc + {Ab, xb}, {xa,Aa}) . (5.10)

Here

f = {Aa, xa} (5.11)

can be viewed as gauge fixing function, since it transforms as

f → f + {xa, {xa,Λ}} = f − g2YM�GΛ (5.12)

under gauge transformations. We can thus choose the gauge such that f = 0.

We want to understand how the geometry is influenced by matter. We assume that all

fields on M2 couple to the effective metric15 Gµν , so that the metric perturbations couple

to matter via the energy-momentum tensor. The linearized metric fluctuation is given by

δAgµν = Jaµ∂νAa + Jaν ∂µAa
= ∇µAν +∇νAµ − 2Ka

µνAa (5.13)

where we decompose the perturbations into tangential and transversal ones

A⊥ = KaAa, Aµ = JaµAa . (5.14)

Using 2Ka
µν = eσgµνK

a (5.5), the perturbation of the effective metric in Darboux coordi-

nates can be written as

δAG
µν = −g−2YMθ

µµ′θνν
′
δAgµν

= −g−2YMθ
µµ′θνν

′
(∇µAν +∇νAµ)− eσGµν KaAa . (5.15)

15We ignore possibly different conformal factors for different types of matter, for the sake of illustrating

the mechanism in a simple toy model.
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Therefore

δASM = −1

2

∫
d2x
√
GTµνδAG

µν =

∫
d2x
√
G

(
eσ

2
TKa −∇µT̃µν Jaν

)
Aa (5.16)

noting that ∇θµν = 0, where T = TµνG
µν , and we define

T̃µν = g−2YMθ
νν′θµµ

′
Tµ′ν′ (5.17)

for convenience. Thus the normal component A⊥ couples to the trace of the energy-

momentum tensor, while the tangential components couple to its derivative. This illustrates

the observation [21, 22] that a non-derivative coupling of the embedding perturbations to

the energy-momentum tensor arises on branes with extrinsic curvature. Using the on-shell

condition (4.6) for the background and√
|Gµν ||θµν | = gYMe

σ/2, (5.18)

we obtain the semi-classical equations of motion

�GAa =
1

8
gYMe

σ/2
(
− eσ TKa + 2Jaµ∇ν T̃µν

)
. (5.19)

Note that the normal component couples to T via the extrinsic curvature. This is the

crucial ingredient for gravity, as we will see below.

5.1 Curvature perturbations and gravity

Now we can obtain the curvature perturbations induced by matter. Since in 2 dimensions

Ricµν [G] = 1
2GµνRic[G] where Ric[G] is the Ricci scalar, we will restrict ourselves to study

the linearized perturbations of Ric[G]. This can be computed using

δRµν [G] = −1

2
∇µ∂ν(GρηδGρη)−

1

2
�GδGµν +∇(µ∇ηδGν)η, (5.20)

which implies

δARic[G] =

(
�G +

1

2
Ric[G]

)
(GµνδAG

µν)−∇µ∇νδAGµν . (5.21)

The perturbation of the effective metric in Darboux coordinates can be written as follows

(cf. (5.15))

δAG
µν = −g−2YMθ

µµ′θνν
′
(Jaµ′∂ν′Aa + Jaν′∂µ′Aa) (5.22)

using δθµν = 0. After some computations given in the appendix, the corresponding per-

turbation of the Ricci tensor is obtained as

δARic[G] =
1

2
gYMe

σ/2
(
R−2 T +∇µ∇ν T̃µν

)
= 8πGN

(
T +R2∇µ∇ν T̃µν

)
,

8πGN = eσ/2
gYM
2R2

=
κeσ

2R
. (5.23)
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This can be seen as linearization of the following gravity model

Ric[G]− Λ = 8πGNT +O(∂∂T ) ,

Λ = −2e−σR−2 , (5.24)

which is reasonable and non-trivial in 2 dimensions [24, 25] (dropping the O(∂∂T ) terms),

unlike general relativity which does not allow any coupling to matter. Note that the

derivative term is of order

∇∇T̃ ∼ eσ∇∇T (5.25)

using (5.18), and can be neglected provided eσ � 1, which is compatible with GN � 1.

Although we focused on the AdS2 background, the result should equally apply to the dS2

background, which is obtained by changing the sign of the matrix model action.

We emphasize again that no specific gravity action was assumed or induced, we have

simply elaborated the matrix model dynamics from a geometrical point of view. The crucial

coupling to Tµν arises due to the extrinsic curvature of the brane encoded in ∇µJaν = Ka
µν ,

as pointed out in [21, 22]; this is already seen in (5.19). Also, it is gratifying (and not

evident) that the Newton constant turns out to be positive. The mechanism is basically

the same as the “gravity bag“ mechanism discussed in [23]. Its 4-dimensional version is

clearly more complicated and currently under investigation, however at least certain aspects

of the mechanism generalize [21, 22].

However, since the gravitational coupling is dynamical itself, the above linearized treat-

ment of the coupling is justified only as long as the perturbations of the radial Ka
µν is

negligible, i.e.

δKa
µν � Ka

µν . (5.26)

For the AdS2 backgrounds under consideration, this implies that the intrinsic curvature

perturbation is smaller than the background constant curvature. This is clearly inadequate

for physical gravity, however the basic mechanism should extend beyond this regime for

backgrounds where the extrinsic curvature dominates the intrinsic one, such as cylinders

or generalizations.

5.2 Induced metric curvature

It is instructive to compute also the Ricci tensor for the induced metric gµν . Recall the

decomposition of Aa into tangential and normal components (5.14). We have

δARic[g] = −
(
�g +

1

2
Ric[g]

)
(gµνδAgµν) +∇µ∇νδAgµν . (5.27)

Writing the metric perturbation as

δAgµν = ∇µAν +∇νAµ − 2R−2gµνx
aAa , (5.28)
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one finds

∇µ∇νδAgµν = ∇µ∇ν(∇µAν +∇νAµ − 2R−2gµνx
aAa)

= 2�g(∇νAν) + Ric[g](∇νAν)− 2R−2�g(x
aAa) , (5.29)

noting that Ricµν [g] = 1
2Ric[g]gµν and the identity (5.37). Therefore

δARic[g] = −(2�g + Ric[g])(∇νAν − 2R−2xaAa)
+ 2�g(∇νAν) + Ric[g](∇νAν)− 2R−2�g(x

aAa)
= 2R−2(�g + Ric[g])(xaAa) . (5.30)

As a consistency check, we note that the tangential variations Aµ drop out, since they

correspond to a diffeomorphism. Since g = eσG, this is related to δARic[G] up to conformal

rescaling contributions.

5.3 Gauge theory point of view

In this final section, we disentangle and essentially solve the model using the gauge theory

point of view. Recall the decomposition (5.14) of Aa into normal and tangential compo-

nents. For the normal perturbations A⊥, we can use the identity

�GA⊥ = −Ric[G] (KaAa) + 2∇µKa∂µAa +Ka�GAa

= Ric[G]A⊥ − 2Ric (∇µAµ) +Ka�GAa , (5.31)

so that using the equation of motion (A.9) gives

�GA⊥ = RicA⊥ − 2Ric (∇µAµ) +
1

2
κR−1 T . (5.32)

Similarly, consider the divergence of the tangential perturbations

∇µAµ = ∇µ(JaµAa) = KaAa + Jaµ∇µAa . (5.33)

The tangential components of the equation of motion give

Jaµ�GAa =
1

4
gYMe

σ/2gηµ∇ν T̃ ην , (5.34)

so that

�GAµ = 2∇ρJaµ∂ρAa + �GJ
a
µAa +

1

4
gYMe

σ/2gηµ∇ν T̃ ην

= 2Ka
ρµ∂

ρAa −
1

2
Ric[G]Aµ +

1

4
gYMe

−σ/2Gηµ∇ν T̃ ην (5.35)

using ∇µKa
µν = �GJ

a
µ = −1

2Ric[G]Jaµ and Ka
ρµ = 1

2GρµK
a. This gives

∇µ�GAµ = −Ric[G] Jaρ∂
ρAa +Ka�GAa −

1

2
Ric[G]∇µAµ +

1

4
gYMe

−σ/2∇µ∇ν T̃ ην

= Ric[G]KaAa −
3

2
Ric[G]∇µAµ +

1

4
κR
(
2R−2 T +∇µ∇ν T̃µν

)
. (5.36)
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Together with

�G(∇µAµ) = −1

2
Ric[G]∇µAµ +∇µ�GAµ , (5.37)

it follows that the scalar field ∇µAµ satisfies the wave equation

�G(∇µAµ) = −2Ric[G] (∇µAµ) + Ric[G]A⊥ +
1

4
κR
(
2R−2 T +∇µ∇ν T̃µν

)
. (5.38)

Together with (5.32) we we obtain the following “almost-decoupled“ wave equations

�Gχ =
κR

4
∇µ∇ν T̃µν ,

(�G + Ric[G])A⊥ = −2Ric[G]χ+
1

2
κR−1 T , (5.39)

where

χ := ∇µAµ −A⊥ = Jaµ∂
µAa . (5.40)

The second is a scalar wave equation for A⊥, and χ can be seen as part of its source,

determined by the first equation. For distances below the “cosmological“ scales, the mass

term can be neglected, leading to massless wave equations with source determined by Tµν
as above.

A remark on the relation with the noncommutative gauge theory point of view is in

order. The usual gauge fields Aµ in the gauge theory interpretation are related to our

tangential perturbations as

θµνAν = ηµνAν , (5.41)

since Jµa = ηµa if xa for a = 0, 1 are normal embedding coordinates, cf. (4.11). Thus

∂µAµ ∼ θµν∂µAν =
1

2
θµνFµν (5.42)

up to some constant. This is gauge invariant (more precisely it transforms as a scalar field

under noncommutative gauge transformations i.e. symplectomorphisms), and encodes the

only physical degree of freedom in 2D gauge theory. Similarly, A⊥ can be interpreted as

noncommutative scalar field in the noncommutative gauge theory. Therefore ∂µAµ and

A⊥ completely capture the physics of the system, which is described by (5.39) at the

semi-classical (Poisson) level. It is also worth pointing out that the radial and tangential

perturbations mix as observed in [21, 22], but we were able to disentangle them in the

2-dimensional case.

6 Conclusion

We studied the fuzzy version of 2-dimensional de Sitter and Anti-de Sitter space, and some

of the associated physics. The quantization map is discussed in detail, and we obtained
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explicit formulae for the functions on the fuzzy hyperboloid corresponding to unitary irre-

ducible representations of SO(2, 1). This should provide the basis for further work on the

associated non-commutative field theory on a curved space-time with Minkowski signature.

Moreover, we consider a matrix model which admits fuzzy (A)dS2 as solution, and study

the resulting dynamics of the geometry. This allows to study the general ideas of emergent

geometry in matrix models on a simple curved background with Minkowski signature. Al-

though the model is modified as compared with the IKKT model by adding a cubic term,

it is an interesting toy model which allows to essentially solve the resulting dynamics. We

find that the transversal brane perturbations indeed couple to the energy-momentum ten-

sor as emphasized in [21, 22], and we also find a mixing between tangential and transversal

perturbations in the gauge theory point of view. The brane dynamics leads to a reasonable

linearized gravity theory, related to Henneaux – Teitelboim gravity in 2 dimensions. It is

remarkable that this happens through the bare matrix model action, without adding any

gravity terms and without invoking any quantum effects. The mechanism does not require

a strong-coupling regime. Even though the present toy model is not of direct physical rele-

vance, it is nevertheless useful to clarify the dynamics of the branes and their geometry, as

a step towards higher-dimensional more physical matrix models such as the IKKT model.

It would also be interesting to study a finite-dimensional realization of the matrix

model numerically, following [38]. This might serve as a toy model and testing ground for

the case of Minkowski signature, as a step towards the higher-dimensional case.
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A Appendix: derivation of the linearized gravity equations

We note the following identities

JaµJaν = gµν , JaµKaνη = 0 (A.1)

as well as

∇µJaµ = Ka ,

�GJ
a
µ = ∂µ�Gx

a + RicµνJ
aν = −1

2
Ric[G] Jaµ (A.2)
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which follows from (5.7). Then

g−2YMθ
µµ′θνν

′∇µ∇ν(Jaν′∂µ′Aa) = g−2YMθ
µµ′θνν

′∇µ(Ka
νν′∂µ′Aa + Jaν′∇ν∂µ′Aa)

= g−2YMθ
µµ′θνν

′
(Ka

µν′∇ν∂µ′Aa + Jaν′∇µ∂µ′∇νAa)

=
eσ

2
Ka�GAa +

1

2
g−2YMθ

µµ′θνν
′
Jaν′ Rµµ′;ν

ρ∂ρAa

=
eσ

2
Ka�GAa −

1

2
g−2YMR

−2θµµ
′
θνν

′
Jaν′(gµνδ

ρ
µ′ − gµ′νδ

ρ
µ)∂ρAa

=
eσ

2
Ka�GAa +R−2Jaν ∂

νAa (A.3)

using (5.6), and noting that ∇[g] = ∇[G] here. Similarly, we obtain using (5.1)

g−2YMθ
µµ′θνν

′∇µ∇ν(Jaµ′∂ν′Aa) = g−2YMθ
µµ′θνν

′∇µ(Ka
νµ′∂ν′Aa + Jaµ′∇ν∂ν′Aa)

=
eσ

2
(Ka�GAa + ∂µK

a∂µAa)

=
eσ

2
Ka�GAa +R−2Jaν ∂

νAa. (A.4)

Therefore

e−σ∇µ∇νδAGµν = −Ka�GAa + Ric[G] Jaν ∂
νAa . (A.5)

Finally, we have

1

2
e−σGµνδG

µν = e−σgµνJaµ∂νAa = Jaµ∂
µAa . (A.6)

Therefore

e−σδARic[G] = e−σ
(
�G +

1

2
Ric[G]

)
(GµνδG

µν)− e−σ∇µ∇νδGµν

= (2�G + Ric[G])(Jaµ∂
µAa) + (Ka�GAa − Ric[G] Jaν ∂

νAa)
= Ka�GAa + 2∇µ(Jaµ�GAa) , (A.7)

where we used

�G(Jaµ∂
µAa) = �GJ

a
µ∂

µAa + Jaµ�G∂
µAa + 2Ka

µν∇µ∇νAa

= −1

2
Ric[G]Jaµ∂

µAa + Jaµ∂
µ�GAa + Ricµν [G]Jaµ∂

νAa +Ka�GAa

= ∇µ(Jaµ�GAa)− (∇µJaµ)�GAa +Ka�GAa
= ∇µ(Jaµ�GAa) (A.8)

due to (A.2). Now we can use the equations of motion (5.19), which give

∇µ(Jaµ�GAa) =
1

4
gYMe

σ/2∇µgµν∇ρT̃ νρ =
1

4
gYMe

−σ/2∇µ∇ν T̃µν

Ka�GAa = −1

8
gYMe

3σ/2KaKa T =
1

2
gYMe

−σ/2R−2 T (A.9)
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recalling that JaKa = 0, as well as

KaKa = −4e−2σR−2 . (A.10)

Putting these together, we finally arrive at

δARic[G] =
1

2
gYMe

σ/2
(
R−2 T +∇µ∇ν T̃µν

)
= 8πGN

(
T +R2∇µ∇ν T̃µν

)
8πGN = eσ/2

gYM
2R2

=
κeσ

2R
. (A.11)
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