418 research outputs found

    Mini-Review: Limbal Stem Cells Deficiency in Companion Animals: Time to Give Something Back?

    Get PDF
    Experimental animals have been used extensively in the goal of developing sight-saving therapies for humans. One example is the development of transplantation of cultured limbal epithelial stem cells (LESC) to restore vision following ocular surface injury or disease. With clinical trials of cultured LESC therapy underway in humans and a potential companion animal population suffering from similar diseases, it is perhaps time to give something back. Comparatively to humans, what is known about the healthy limbus and corneal surface physiology of companion animals is still very little. Blinding corneal diseases in animals such as symblepharon in cats with Feline Herpes Virus-1 infections require a basic understanding of the functional companion animal limbus and corneal stem cells. Our understanding of many other vision threatening conditions such as scarring of the cornea post-inflammation with lymphocytic-plasmacytic infiltrate in dogs (aka chronic superficial keratitis) or pigment proliferation with Pigmentary Keratitis of Pugs would benefit from a better understanding of the animal cornea in health and disease. This is also vital when new therapeutic approaches are considered. This review will explore the current challenges and future research directions that will be required to increase our understanding of corneal diseases in animals and consider the potential development and delivery of cultured stem cell therapy to veterinary ocular surface patients

    Genomic signatures of population decline in the malaria mosquito Anopheles gambiae

    Get PDF
    Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    The Human Polyoma JC Virus Agnoprotein Acts as a Viroporin

    Get PDF
    Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca2+; (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca2+ homeostasis leading to membrane dysfunction and enhancement of virus release

    Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including <it>Halobacterium </it>sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters.</p> <p>Results</p> <p>We attempted to knock out all six TBP and seven TFB genes in <it>Halobacterium </it>sp. NRC-1 using the <it>ura</it>3-based gene deletion system. Knockouts were obtained for six out of thirteen genes, <it>tbp</it>CDF and <it>tfb</it>ACG, indicating that they are not essential for cell viability under standard conditions. Screening of a population of 1,000 candidate mutants showed that genes which did not yield mutants contained less that 0.1% knockouts, strongly suggesting that they are essential. The transcriptomes of two mutants, Δ<it>tbp</it>D and Δ<it>tfb</it>A, were compared to the parental strain and showed coordinate down regulation of many genes. Over 500 out of 2,677 total genes were regulated in the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutants with 363 regulated in both, indicating that over 10% of genes in both strains require the action of both TbpD and TfbA for normal transcription. Culturing studies on the Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains showed them to grow more slowly than the wild-type at an elevated temperature, 49°C, and they showed reduced viability at 56°C, suggesting TbpD and TfbA are involved in the heat shock response. Alignment of TBP and TFB protein sequences suggested the expansion of the TBP gene family, especially in <it>Halobacterium </it>sp. NRC-1, and TFB gene family in representatives of five different genera of haloarchaea in which genome sequences are available.</p> <p>Conclusion</p> <p>Six of thirteen TBP and TFB genes of <it>Halobacterium </it>sp. NRC-1 are non-essential under standard growth conditions. TbpD and TfbA coordinate the expression of over 10% of the genes in the NRC-1 genome. The Δ<it>tbp</it>D and Δ<it>tfb</it>A mutant strains are temperature sensitive, possibly as a result of down regulation of heat shock genes. Sequence alignments suggest the existence of several families of TBP and TFB transcription factors in <it>Halobacterium </it>which may function in transcription of different classes of genes.</p

    Baby-Led Weaning: The Evidence to Date

    Get PDF
    Purpose of ReviewInfants are traditionally introduced to solid foods using spoon-feeding of specially prepared infant foods.Recent FindingsHowever, over the last 10–15 years, an alternative approach termed ‘baby-led weaning’ has grown in popularity. This approach involves allowing infants to self-feed family foods, encouraging the infant to set the pace and intake of the meal. Proponents of the approach believe it promotes healthy eating behaviour and weight gain trajectories, and evidence is starting to build surrounding the method. This review brings together all empirical evidence to date examining behaviours associated with the approach, its outcomes and confounding factors.SummaryOverall, although there is limited evidence suggesting that a baby-led approach may encourage positive outcomes, limitations of the data leave these conclusions weak. Further research is needed, particularly to explore pathways to impact and understand the approach in different contexts and populations

    The accuracy of Multi-detector row CT for the assessment of tumor invasion of the mesorectal fascia in primary rectal cancer

    Get PDF
    PURPOSE: To evaluate the accuracy of Multi-detector row CT (MDCT) for the prediction of tumor invasion of the mesorectal fascia (MRF). MATERIALS AND METHODS: A total of 35 patients with primary rectal cancer underwent preoperative staging magnetic resonance imaging (MRI) and MDCT. The tumor relationship to the MRF, expressed in 3 categories (1--tumor free MRF = tumor distance > or = 1 mm; 2--threatened = distance < 1 mm; 3--invasion = distance 0 mm) was determined on CT by two observers at patient level and at different anatomical locations. A third expert reader evaluated the MRF tumor relationship on MRI, which served as reference standard. Receiver operating characteristic curves (ROC-curves) and areas under these curves (AUC) were calculated. The inter-observer agreement of CT was determined by using linear weighted kappa statistics. RESULTS: The AUC of CT for MRF invasion was 0.71 for observer 1 and 0.62 for observer 2. The inter-observer agreement was kappa = 0.34. The performance of CT at mid-high rectal levels was statistically significant better compared to low anterior (obs.1: AUC = 0.88 vs. 0.50; obs 2: AUC = 0.84 vs. 0.31; P < or = 0.040). CONCLUSION: Multi-detector row CT has a poor accuracy for predicting MRF invasion in low-anterior located tumors.The accuracy of CT significantly improves for tumors in the mid-high rectum. There is a high inconsistency among readers
    corecore