6 research outputs found
Recommended from our members
Can purchasing information be used to predict adherence to cardiovascular medications? An analysis of linked retail pharmacy and insurance claims data
Objective: The use of retail purchasing data may improve adherence prediction over approaches using healthcare insurance claims alone. Design: Retrospective. Setting and participants A cohort of patients who received prescription medication benefits through CVS Caremark, used a CVS Pharmacy ExtraCare Health Care (ECHC) loyalty card, and initiated a statin medication in 2011. Outcome We evaluated associations between retail purchasing patterns and optimal adherence to statins in the 12 subsequent months. Results: Among 11 010 statin initiators, 43% were optimally adherent at 12 months of follow-up. Greater numbers of store visits per month and dollar amount per visit were positively associated with optimal adherence, as was making a purchase on the same day as filling a prescription (p<0.0001 for all). Models to predict adherence using retail purchase variables had low discriminative ability (C-statistic: 0.563), while models with both clinical and retail purchase variables achieved a C-statistic of 0.617. Conclusions: While the use of retail purchases may improve the discriminative ability of claims-based approaches, these data alone appear inadequate for adherence prediction, even with the addition of more complex analytical approaches. Nevertheless, associations between retail purchasing behaviours and adherence could inform the development of quality improvement interventions
Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions
Studies that generate real-world evidence on the effects of medical products through analysis of digital data collected in clinical practice provide key insights for regulators, payers, and other healthcare decision-makers. Ensuring reproducibility of such findings is fundamental to effective evidence-based decision-making. We reproduce results for 150 studies published in peer-reviewed journals using the same healthcare databases as original investigators and evaluate the completeness of reporting for 250. Original and reproduction effect sizes were positively correlated (Pearson’s correlation = 0.85), a strong relationship with some room for improvement. The median and interquartile range for the relative magnitude of effect (e.g., hazard ratiooriginal/hazard ratioreproduction) is 1.0 [0.9, 1.1], range [0.3, 2.1]. While the majority of results are closely reproduced, a subset are not. The latter can be explained by incomplete reporting and updated data. Greater methodological transparency aligned with new guidance may further improve reproducibility and validity assessment, thus facilitating evidence-based decision-making. Study registration number: EUPAS19636
Reproducible Evidence: Practices to Enhance and Achieve Transparency (REPEAT)
Studies that generate real-world evidence (RWE) through analysis of routinely collected healthcare data provide key insights for regulators, payers, and other healthcare decision-makers. In this project, we evaluated clarity of methodology reporting for 250 RWE studies and attempted to reproduce 150 studies using the same data sources and methods reported by the original investigators