3,968 research outputs found

    Compact formulae, dynamics and radiation of charged particles under synchro-curvature losses

    Full text link
    We consider the fundamental problem of charged particles moving along and around a curved magnetic field line, revising the synchro-curvature radiation formulae introduced by Cheng and Zhang (1996). We provide more compact expressions to evaluate the spectrum emitted by a single particle, identifying the key parameter that controls the transition between the curvature-dominated and the synchrotron-dominated regime. This parameter depends on the local radius of curvature of the magnetic field line, the gyration radius, and the pitch angle. We numerically solve the equations of motion for the emitting particle by considering self-consistently the radiative losses, and provide the radiated spectrum produced by a particle when an electric acceleration is balanced by its radiative losses, as it is assumed to happen in the outer gaps of pulsar's magnetospheres. We compute the average spectrum radiated throughout the particle trajectory finding that the slope of the spectrum before the peak depends on the location and size of the emission region. We show how this effect could then lead to a variety of synchro-curvature spectra. Our results reinforce the idea that the purely synchrotron or curvature losses are, in general, inadequate to describe the radiative reaction on the particle motion, and the spectrum of emitted photons. Finally, we discuss the applicability of these calculations to different astrophysical scenarios.Comment: 9 pages, 5 figures, 2 tables. Accepted for publication in MNRAS main journal. References update

    Exon-intron structure and sequence variation of the calreticulin gene among Rhipicephalus sanguineus group ticks

    Get PDF
    Background: Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only one intron with conserved position among species. In this study we investigated the exon-intron structure and variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential utility of crt gene as a molecular marker. Methods: We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni, R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained were estimated. Results: All individuals belonging to the tropical lineage of R. sanguineus (s. l.), R. guilhoni, R. muhsamae, R. turanicus, Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s. l.), showing the occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus (s. l.) being more closely related to each other. Conclusions: We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general. Notably, the intron presence/absence polymorphism observed herein can be a candidate study-system to investigate the early stages of intron gain/loss before fixation at species level and some debated questions about intron evolution. Finally, the sequence variation observed supports the suitability of the crt gene for molecular recognition of Rhipicephalus spp. and for phylogenetic studies in association with other markers

    Synchro-curvature emitting regions in high-energy pulsar models

    Full text link
    The detected high-energy pulsars' population is growing in number, and thus, having agile and physically relevant codes to analyze it consistently is important. Here, we update our existing synchro-curvature radiation model by including a better treatment of the particle injection, particularly where the large pitch angle particles dominate the spectra, and by implementing a fast and accurate minimization technique. The latter allows a large improvement in computational cost, needed to test model enhancements and to apply the model to a larger pulsar population. We successfully fit the sample of pulsars with X-ray and γ\gamma-ray data. Our results indicate that, for every emitting particle, the spatial extent of their trajectory where the pitch angle is large and most of the detected X-ray radiation is produced is a small fraction of the light cylinder. We also confirm with this new approach that synchrotron radiation is not negligible for most of the gamma-ray pulsars detected. In addition, with the results obtained, we argue that J0357+3205 and J2055+2539 are MeV-pulsar candidates and are suggested for exhaustive observations in this energy band.Comment: 12 pages, 7 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Synchro-curvature description of γ\gamma-ray light curves and spectra of pulsars: global properties

    Full text link
    This work presents a methodological approach to generate realistic γ\gamma-ray light curves of pulsars, resembling reasonably well the observational ones observed by the Fermi-Large Area Telescope instrument, fitting at the same time their high-energy spectra. The theoretical light curves are obtained from a spectral and geometrical model of the synchro-curvature emission. Despite our model relies on a few effective physical parameters, the synthetic light curves present the same main features observed in the observational γ\gamma-ray light curve zoo, such as the different shapes, variety in the number of peaks, and a diversity of peak widths. The morphological features of the light curves allows us to statistically compare the observed properties. In particular, we find that the proportion on the number of peaks found in our synthetic light curves is in agreement with the observational one provided by the third Fermi-LAT pulsar catalog. We also found that the detection probability due to beaming is much higher for orthogonal rotators (approaching 100%) than for small inclination angles (less than 20%).The small variation on the synthetic skymaps generated for different pulsars indicates that the geometry dominates over timing and spectral properties in shaping the gamma-ray light curves. This means that geometrical parameters like the inclination angle can be in principle constrained by gamma-ray data alone independently on the specific properties of a pulsar. At the same time, we find that γ\gamma-ray spectra seen by different observers can slightly differ, opening the door to constraining the viewing angle of a particular pulsar.Comment: 14 pages, 8 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data

    Get PDF
    The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers

    Biological compatibility between two temperate lineages of brown dog ticks, Rhipicephalus sanguineus (sensu lato)

    Get PDF
    Background: The brown dog tick Rhipicephalus sanguineus (sensu stricto) is reputed to be the most widespread tick of domestic dogs worldwide and has also been implicated in the transmission of many pathogens to dogs and humans. For more than two centuries, Rh. sanguineus (s.s.) was regarded as a single taxon, even considering its poor original description and the inexistence of a type specimen. However, genetic and crossbreeding experiments have indicated the existence of at least two distinct taxa within this name: the so-called "temperate" and "tropical" lineages of Rh. sanguineus (sensu lato). Recent genetic studies have also demonstrated the existence of additional lineages of Rh. sanguineus (s.l.) in Europe and Asia. Herein, we assessed the biological compatibility between two lineages of Rh. sanguineus (s.l.) found in southern Europe, namely Rhipicephalus sp. I (from Italy) and Rhipicephalus sp. II (from Portugal). Methods: Ticks morphologically identified as Rh. sanguineus (s.l.) were collected in southern Portugal and southern Italy. Tick colonies were established and crossbreeding experiments conducted. Morphological, biological and genetic analyses were conducted. Results: Crossbreeding experiments confirmed that ticks from the two studied lineages were able to mate and generate fertile hybrids. Hybrid adult ticks always presented the same genotype of the mother, confirming maternal inheritance of mtDNA. However, larvae and nymphs originated from Rhipicephalus sp. I females presented mtDNA genotype of either Rhipicephalus sp. I or Rhipicephalus sp. II, suggesting the occurrence of paternal inheritance or mitochondrial heteroplasmy. While biologically compatible, these lineages are distinct genetically and phenotypically. Conclusions: The temperate lineages of Rh. sanguineus (s.l.) studied herein are biologically compatible and genetic data obtained from both pure and hybrid lines indicate the occurrence of paternal inheritance or mitochondrial heteroplasmy. This study opens new research avenues and raises question regarding the usefulness of genetic data and crossbreeding experiments as criteria for the definition of cryptic species in ticks
    corecore