37 research outputs found

    Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer

    Get PDF
    The current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph node involvement for breast cancer patients with clinically negative lymph nodes on clinical or radiological examination. Machine learning (ML) models have significantly improved the prediction of lymph nodes status based on clinical features, thus avoiding expensive, time-consuming and invasive procedures. However, the classification of sentinel lymph node status represents a typical example of an unbalanced classification problem. In this work, we developed a ML framework to explore the effects of unbalanced populations on the performance and stability of feature ranking for sentinel lymph node status classification in breast cancer. Our results indicate state-of-the-art AUC (Area under the Receiver Operating Characteristic curve) values on a hold-out set (67%) while providing particularly stable features related to tumor size, histological subtype and estrogen receptor expression, which should therefore be considered as potential biomarkers

    Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer's disease mouse model: a role for ER-mitochondria interaction

    Get PDF
    Deregulation of protein synthesis and ER stress/unfolded protein response (ER stress/UPR) have been reported in astrocytes. However, the relationships between protein synthesis deregulation and ER stress/UPR, as well as their role in the altered homeostatic support of Alzheimer's disease (AD) astrocytes remain poorly understood. Previously, we reported that in astrocytic cell lines from 3xTg-AD mice (3Tg-iAstro) protein synthesis was impaired and ER-mitochondria distance was reduced. Here we show that impaired protein synthesis in 3Tg-iAstro is associated with an increase of p-eIF2α and downregulation of GADD34. Although mRNA levels of ER stress/UPR markers were increased two-three-fold, we found neither activation of PERK nor downstream induction of ATF4 protein. Strikingly, the overexpression of a synthetic ER-mitochondrial linker (EML) resulted in a reduced protein synthesis and augmented p-eIF2α without any effect on ER stress/UPR marker genes. In vivo, in hippocampi of 3xTg-AD mice, reduced protein synthesis, increased p-eIF2α and downregulated GADD34 protein were found, while no increase of p-PERK or ATF4 proteins was observed, suggesting that in AD astrocytes, both in vitro and in vivo, phosphorylation of eIF2α and impairment of protein synthesis are PERK-independent. Next, we investigated the ability of 3xTg-AD astrocytes to support metabolism and function of other cells of the central nervous system. Astrocyte-conditioned medium (ACM) from 3Tg-iAstro cells significantly reduced protein synthesis rate in primary hippocampal neurons. When added as a part of pericyte/endothelial cell (EC)/astrocyte 3D co-culture, 3Tg-iAstro, but not WT-iAstro, severely impaired formation and ramification of tubules, the effect, replicated by EML overexpression in WT-iAstro cells. Finally, a chemical chaperone 4-phenylbutyric acid (4-PBA) rescued protein synthesis, p-eIF2α levels in 3Tg-iAstro cells and tubulogenesis in pericyte/EC/3Tg-iAstro co-culture. Collectively, our results suggest that a PERK-independent, p-eIF2α-associated impairment of protein synthesis compromises astrocytic homeostatic functions, and this may be caused by the altered ER-mitochondria interaction

    A Cost Decision Model Supporting Treatment Strategy Selection in BRCA1/2 Mutation Carriers in Breast Cancer

    No full text
    In this paper, a cost decision-making model that compares the healthcare costs for diverse treatment strategies is built for BRCA-mutated women with breast cancer. Moreover, this model calculates the cancer treatment costs that could potentially be prevented, if the treatment strategy with the lowest total cost, along the entire lifetime of the patient, is chosen for high-risk women with breast cancer. The benchmark of the healthcare costs for diverse treatment strategies is selected in the presence of uncertainty, i.e., considering, throughout the lifetime of the patient, the risks and complications that may arise in each strategy and, therefore, the costs associated with the management of such events. Our results reveal a clear economic advantage of adopting the cost decision-making model for benchmarking the healthcare costs for various treatment strategies for BRCA-mutated women with breast cancer. The cost savings were higher when all breast cancer patients underwent counseling and genetic testing before deciding on any diagnostic-therapeutic path, with a probability of obtaining savings of over 75%

    Identification and Molecular Characterization of Novel Mycoviruses in Saccharomyces and Non-Saccharomyces Yeasts of Oenological Interest

    No full text
    Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which—Partitiviridae and Mitoviridae—were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin—two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects

    Second-Generation 3D Automated Breast Ultrasonography (Prone ABUS) for Dense Breast Cancer Screening Integrated to Mammography: Effectiveness, Performance and Detection Rates

    No full text
    In our study, we added a three-dimensional automated breast ultrasound (3D ABUS) to mammography to evaluate the performance and cancer detection rate of mammography alone or with the addition of 3D prone ABUS in women with dense breasts. Our prospective observational study was based on the screening of 1165 asymptomatic women with dense breasts who selected independent of risk factors. The results evaluated include the cancers detected between June 2017 and February 2019, and all surveys were subjected to a double reading. Mammography detected four cancers, while mammography combined with a prone Sofia system (3D ABUS) doubled the detection rate, with eight instances of cancer being found. The diagnostic yield difference was 3.4 per 1000. Mammography alone was subjected to a recall rate of 14.5 for 1000 women, while mammography combined with 3D prone ABUS resulted in a recall rate of 26.6 per 1000 women. We also observed an additional 12.1 recalls per 1000 women screened. Integrating full-field digital mammography (FFDM) with 3D prone ABUS in women with high breast density increases and improves breast cancer detection rates in a significant manner, including small and invasive cancers, and it has a tolerable impact on recall rate. Moreover, 3D prone ABUS performance results are comparable with the performance results of the supine 3D ABUS system

    Breast Imaging Physics in Mammography (Part II)

    No full text
    One of the most frequently detected neoplasms in women in Italy is breast cancer, for which high-sensitivity diagnostic techniques are essential for early diagnosis in order to minimize mortality rates. As addressed in Part I of this work, we have seen how conditions such as high glandular density or limitations related to mammographic sensitivity have driven the optimization of technology and the use of increasingly advanced and specific diagnostic methodologies. While the first part focused on analyzing the use of a mammography machine from a physical and dosimetric perspective, in this paper, we will examine other techniques commonly used in breast imaging: contrast-enhanced mammography, digital breast tomosynthesis, radio imaging, and include some notes on image processing. We will also explore the differences between these various techniques to provide a comprehensive overview of breast lesion detection techniques. We will examine the strengths and weaknesses of different diagnostic modalities and observe how, with the implementation of improvements over time, increasingly effective diagnoses can be achieved

    A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer

    No full text
    Despite several studies having identified factors associated with successful treatment outcomes in locally advanced cervical cancer, there is the lack of accurate predictive modeling for progression-free survival (PFS) in patients who undergo radical hysterectomy after neoadjuvant chemotherapy (NACT). Here we investigated whether machine learning (ML) may have the potential to provide a tool to predict neoadjuvant treatment response as PFS. In this retrospective observational study, we analyzed patients with locally advanced cervical cancer (FIGO stages IB2, IB3, IIA1, IIA2, IIB, and IIIC1) who were followed in a tertiary center from 2010 to 2018. Demographic and clinical characteristics were collected at either treatment baseline or at 24-month follow-up. Furthermore, we recorded data about magnetic resonance imaging (MRI) examinations and post-surgery histopathology. Proper feature selection was used to determine an attribute core set. Three different machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and K-nearest neighbors (KNN), were then trained and validated with 10-fold cross-validation to predict 24-month PFS. Our analysis included n. 92 patients. The attribute core set used to train machine learning algorithms included the presence/absence of fornix infiltration at pre-treatment MRI as well as of either parametrium invasion and lymph nodes involvement at post-surgery histopathology. RFF showed the best performance (accuracy 82.4%, precision 83.4%, recall 96.2%, area under receiver operating characteristic curve (AUROC) 0.82). We developed an accurate ML model to predict 24-month PFS

    A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients

    No full text
    In a growing number of social and clinical scenarios, machine learning (ML) is emerging as a promising tool for implementing complex multi-parametric decision-making algorithms. Regarding ovarian cancer (OC), despite the standardization of features that can support the discrimination of ovarian masses into benign and malignant, there is a lack of accurate predictive modeling based on ultrasound (US) examination for progression-free survival (PFS). This retrospective observational study analyzed patients with epithelial ovarian cancer (EOC) who were followed in a tertiary center from 2018 to 2019. Demographic features, clinical characteristics, information about the surgery and post-surgery histopathology were collected. Additionally, we recorded data about US examinations according to the International Ovarian Tumor Analysis (IOTA) classification. Our study aimed to realize a tool to predict 12 month PFS in patients with OC based on a ML algorithm applied to gynecological ultrasound assessment. Proper feature selection was used to determine an attribute core set. Three different machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and K-nearest neighbors (KNN), were then trained and validated with five-fold cross-validation to predict 12 month PFS. Our analysis included n. 64 patients and 12 month PFS was achieved by 46/64 patients (71.9%). The attribute core set used to train machine learning algorithms included age, menopause, CA-125 value, histotype, FIGO stage and US characteristics, such as major lesion diameter, side, echogenicity, color score, major solid component diameter, presence of carcinosis. RFF showed the best performance (accuracy 93.7%, precision 90%, recall 90%, area under receiver operating characteristic curve (AUROC) 0.92). We developed an accurate ML model to predict 12 month PFS

    Prevalence of Patients Affected by Fibromyalgia in a Cohort of Women Underwent Mammography Screening

    No full text
    : Fibromyalgia is a widespread condition which is currently underdiagnosed; therefore we conceived this study in order to assess whether a diagnostic suspicion may be assumed during widespread screening procedures, so that patients for which a reasonable diagnostic suspicion exist may be redirected towards rheumatologic evaluation. We analyzed a sample of 1060 patients, all of whom were female and undergoing standard breast cancer screening procedures, and proceeded to evaluate the level of pain they endured during mammographic exam. We also acquired a range of other information which we related to the level of pain endured; we suggested a rheumatologic examination for those patients who endured the highest level of pain and then we evaluated how many patients in this subgroup were actually diagnosed with fibromyalgia. Out of the 1060 patients who participated to our study, 139 presented level 4 pain intensity; One patient did not go for rheumatologic examination; the remaining 138 underwent rheumatologic evaluation, and 50 (36%, 28-44, 95% CI) were diagnosed with fibromyalgia. Our study shows that assessing the level of pain endured by patients during standard widespread screening procedures may be an effective asset in deciding whether or not to suggest specialist rheumatologic evaluation for fibromyalgia
    corecore