1,657 research outputs found
Contact interactions for many-particle quantum systems in dimension three
We discuss a class of regularized zero-range Hamiltonians for three different problems satisfying a bosonic symmetry in dimension three. Following the standard approach in defining such Hamiltonians in three dimensions, one comes up with the so-called Ter-Martirosyan Skornyakov Hamiltonian that turns out to be unbounded from below (Thomas collapse occurs in case of usual two-body point interactions since zero-range interactions become too singular when three or more particles get close). In order to avoid this energetical instability, we consider a many-body repulsion meant to weaken the strength of the interaction when more than two particles coincide. More precisely, developing a suggestion made in the early '60s by Minlos and Faddeev, we introduce an effective scattering length depending on the positions of the particles. In case of a three-boson problem (or a Bose gas of non-interacting particles interacting only with an impurity) such a function vanishes as a third particle gets closer to the couple of interacting particles. Similarly, dealing with an interacting Bose gas, we also take into account a four-body repulsion in order to handle the ultraviolet singularity associated with the collapse of two distinct couples of interacting particles. We show that the Hamiltonians corresponding to these regularizations are self-adjoint and bounded from below, provided that the strength of the many-body force is large enough. Moreover, we compare our results with the ones obtained in the early '80s by Albeverio et al, which exploits an alternative method based on Dirichlet forms, providing the construction of a one-parameter family of many-body regularized zero-range Hamiltonians. In particular, we prove that such a class of regularized Hamiltonians is a special case of what can be obtained with our approach
Evaluation of the accuracy of a patient-specific instrumentation
Patient-specific instruments (PSI) has been introduced with the aim to reduce the overall costs of the implants, minimizing the size and number of instruments required, and also reducing surgery time. The aim of this study was to perform a review of the current literature, as well as to report about our personal experience, to assess reliability and accuracy of patient specific instrument system in total knee arthroplasty (TKA). A literature review was conducted of PSI system reviewing articles related to coronal alignment, clinical knee and function scores, cost, patient satisfaction and complications. Studies have reported incidences of coronal alignment ≥3° from neutral in TKAs performed with patient-specific cutting guides ranging from 6% to 31%. PSI seem not to be able to result in the same degree of accuracy as for the CAS system, while comparing well with standard manual technique with respect to component positioning and overall lower axis, in particular in the sagittal plane. In cases in which custom-made cutting jigs were used, we recommend performing an accurate control of the alignment before and after any cuts and in any further step of the procedure, in order to avoid possible outliers
A Comparison Between Traditional and Modern Approaches for the Structural Modelling of Brick Masonry Barrel Vaults
Masonry vaults are widespread and characteristic structural elements of our built heritage since many centuries, but for a very long time they were built only based upon the experience and the proportional analysis of previous positive examples. Since the Hooke’s observations, in 17th century, about the shape of the catenary, and the first graphical analyses of 18th century, the tools for their “scientific” calculation have developed quickly [1], mainly to assess the stability of already existing structures rather than for the prevision of the future behaviour of new vaults. Despite the great progress in this field, ordinary programs for the static and seismic assessment of masonry buildings often disregard the vaults structural role and the professionals sometimes underestimate it, also due to the lack of attention dedicated to these structures by the technical codes. Therefore it seems now important to reconnect the elements of this modelling historical evolution, to compare the different methods and to find an equilibrium between complexity and reliability, making it accessible also to the common professional use, whose effects on preservation are important. To this aim, a pavilion vault was chosen as a reference, with given geometries and materials features, and the different methods were applied. On one side, traditional methods were chosen: the graphic Méry method [2] and the static theorem of limit analysis [3] have been applied to a system of 2D arches composing the vault. On the other side, a 2D Finite Element Model and the edge cutting ChronoEngine Distinct Element Model [4] have been also tested, under the same conditions. The influence of the brick pattern on the structural behaviour have been considered, conveniently defining the arches decomposition in the traditional methods and the blocks division in the Distinct Element Method. In all cases, calculations have been made changing both values and positions of the loads. The results are compared both in terms of stresses inside the masonry and in terms of deformation of the structural elements, evaluating the types of information and detail that the different approaches can supply. The results of the advanced numerical methods allow to assess the validity of the traditional approaches. On the other side, the possible contribution of the traditional methods to the calibration of the parameters for the numerical models is also discussed
PotenzialitĂ e rischi dell'immigrazione. Un'analisi dello SPRAR nella metropoli di Roma e in 4 cittĂ medie italiane
La tesi di dottorato è incentrata sull'analisi dei percorsi di inclusione realizzati a livello locale a favore dei richiedenti e titolari protezione internazionale in Italia. In particolare, sono presi in esame gli interventi promossi nell'ambito del Sistema di Protezione per Richiedenti Asilo e Rifugiati (SPRAR). Attraverso il ricorso alle tecniche proprie della ricerca sociologica qualitativa (interviste semi-strutturate e osservazioni partecipante), la ricerca ha preso in esame gli impatti di tali interventi sui percorsi di vita dei migranti, sulle organizzazione coinvolte nella formulazione e implementazione delle attività di accoglienza e, infine, sui contesti locale. Sono state prese in esame 5 progetti SPRAR in altrettante realtà urbane: Roma, Savona, Pordenone, Pesaro, Matera
Mineralogy and crystallization patterns in conodont bioapatite from first occurrence (Cambrian) to extinction (end-Triassic)
Bioapatite represents an important acquisition in the evolution of life, both in the seas and on land. Vertebrates applied calcium-phosphate biominerals to grow their skeletal support and to shape their teeth, while some invertebrates sheltered their soft parts within apatite shells. Conodonts were the first among vertebrates to experiment with skeletal biomineralization of tooth-like elements in their feeding apparatus. Spanning a time record of over 300 million years, they offer a unique tool to test possible variation in bioapatite structure from the experimentation of a very primitive biomineralization type to a more evolute pattern just before going extinct. X-ray microdiffraction carried out through an X-ray micro-diffractometer, integrated with environmental scanning electron microscopy coupled with chemical microanalyses (ESEM-EDX), has been applied in this study to investigate conodont element crystal structure throughout the entire stratigraphic range of these organisms. In particular, bioapatite crystallographic cell parameters have been calculated for about one hundred conodont elements ranging from the late Cambrian to the Late Triassic. Resulting data clearly indicate two distinct distribution plots of cell parameters for paraconodonts and euconodonts. In contrast, age, taxonomy, geographic provenance and CAI do not affect the dimension of the bioapatite crystal cells. Conodont bioapatite crystallographic cell parameters have been compared with cell parameters resulting from phosphatic/phosphatized material (ostracodes, brachiopods, bryozoans, and fish teeth) present in the same residues producing conodonts. Resulting values of the cell parameters are, in general, mainly correlated with the type of organisms even if, for some of them, a correlation also with age cannot be completely ruled out. According to our data, primary bioapatite appears to imprint a key signature on fossil crystal-chemistry (crystal structure and major chemical element contents), while the contribution of fossilization and diagenetic processes seems less relevant
Diagenesis does not invent anything new: Precise replication of conodont structures by secondary apatite
Conodont elements are important archives of sea/pore water chemistry yet they often exhibit evidence of diagenetic mineral overgrowth which may be biasing measurents. We decided to investigate this phenomenon by characterising chemically and crystallographically, the original biomineral tissue and the diagenetic mineral nature of conodont elements from the Ordovician of Normandy. Diagenetic apatite crystals observed on the surface of conodont elements show distinctive large columnar, blocky or web-like microtextures. We demonstrate that these apatite neo-crystals exhibit the same chemical composition as the original fossil structure. X-ray microdiffraction has been applied herein for the first time to conodont structural investigation. Analyses of the entire conodont element surface of a variety of species have revealed the existence of a clear pattern of crystal preferred orientation. No significant difference in unit cell parameters was documented between the newly formed apatite crystals and those of the smooth conodont surfaces, thus it emerges from our research that diagenesis has strictly replicated the unit cell signature of the older crystals
HOW DID VERTEBRATES SHARPEN THEIR TEETH? A NEW PERSPECTIVE IN BIOAPATITE ANALYSIS
HOW DID VERTEBRATES SHARPEN THEIR TEETH? A NEW
PERSPECTIVE IN BIOAPATITE ANALYSI
Non-Smooth Dynamic Analysis of Local Seismic Damage Mechanisms of the San Felice Fortress in Northern Italy
Abstract The May 2012 seismic swarm, with epicenter in the Modena plane, in Northern Italy, had severe consequences on the historical buildings of the area. In particular, the fortified structures suffered specific, recurring damage and collapse mechanisms. The present paper deals with the case of the San Felice sul Panaro Fortress, which saw the collapse of 4 out of 5 towers and many other global and local effects. The work starts with an in-depth knowledge path, as a fundamental premise for a conscious intervention. The combination among historical analysis of the building, seismic history of the site, materials and pathological survey, structural identification, on-site inspections and tests, allowed to interpret the crack pattern and to identify the damage mechanisms activated by the earthquake, successively examined with specific structural analyses. In particular, the present paper concentrates on the numerical modelling of the identified local mechanisms, adopting a type of analysis first developed at the University of Parma for applied mechanics, based on the use of non-smooth dynamics software, through a Differential Variational Inequalities (DVI) formulation specifically developed for the 3D discrete elements method. It allows to follow large displacements and the opening and closure of cracks in dynamic field. Once the modelling instrument was calibrated, thanks to the comparison with the real damages previously inspected, it was also applied to foresee the behavior of the same mechanisms with different actions and with different types of strengthening
EVALUATION OF CRACK WIDTH IN RC TIES THROUGH A NUMERICAL "RANGE" MODEL
The problem of cracking in reinforced concrete (RC) tensile members has been studied extensively in the past, not only for the analysis of tension zones, but also for understanding and modeling the behavior of beams in bending. Despite the large number of published studies, there is still no agreement on the relative importance of the most critical parameters influencing crack width and spacing (especially bond-slip and stress diffusion in concrete cover), as proved by the development of more than twenty different formulae available in technical literature [1]. Aim of this work is to investigate if a model based exclusively on bond-slip is able to predict correctly crack width and spacing or if the contribution of stress diffusion in concrete cover - which is included in several design Codes and in some numerical or analytical approaches – must be considered. To this purpose, a one-dimensional numerical model based on bond between steel and concrete is here developed for analyzing the behavior of RC tension ties, by also taking into account the influence of bond deterioration near crack surfaces. To consider the uncertainty of crack pattern evolution, the model provides a range of crack widths and spacing that, according to bond theory, are possible for a given load. The effectiveness of the proposed procedure is verified through comparisons with significant experimental results on RC tension members available in the technical literature [2-3], both in terms of global behavior and in terms of crack width and crack spacing evolution as loading increases. These comparisons prove that bond deterioration improves the results and that the proposed approach can be successfully adopted for design purposes, since it provides a correct estimate of maximum crack width. The obtained results are also compared with Codes provisions and the effectiveness of different approaches for predicting crack width is analyzed and discussed. References [1] Borosnyoi A, Balazs GL. Models for flexural cracking in concrete: the state of the art. Struct Concr, 2005; 6(2): 53-62. [2] Wu HQ, Gilbert RI. An experimental study of tension stiffening in reinforced concrete members under short-term and long-term loads. In: UNICIV Report No. R-449, 2008, The University of New South Wales, Sidney, Australia. [3] Gijsbers FBJ, Hehemann AA. Enige trekproven op gewapend beton (Some tensile tests on reinforced concrete). In: Report BI-77-61, 1977, TNO Inst for Building Mat and Struct, Delft, The Netherlands
- …