10,038 research outputs found

    Comment on \u201cCan assimilation of crowdsourced data in hydrological modelling improve flood prediction?\u201d by Mazzoleni et al. (2017)

    Get PDF
    Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD

    Modelling urban floods using a finite element staggered scheme with an anisotropic dual porosity model

    Get PDF
    In porosity models for urban flooding, artificial porosity is used as a statistical descriptor of the urban medium. Buildings are treated as subgrid-scale features and, even with the use of relatively coarse grids, their effects on the flow are accounted for. Porosity models are attractive for large-scale applications due to limited computational demand with respect to solving the classical Shallow Water Equations on high-resolution grids. In the last decade, effective schemes have been developed that allowed accounting for a wealth of sub-grid processes; unfortunately, they are known to suffer from over-sensitivity to mesh design in the case of anisotropic porosity fields, which are typical of urban layouts. In the present study, a dual porosity approach is implemented into a two-dimensional Finite Element numerical scheme that uses a staggered unstructured mesh. The presence of buildings is modelled using an isotropic porosity in the continuity equation, to account for the reduced water storage, and a tensor formulation for conveyance porosity in the momentum equations, to account for anisotropy and effective flow velocity. The element-by-element definition of porosities, and the use of a staggered grid in which triangular cells convey fluxes and continuity is balanced at grid nodes, allow avoiding undesired mesh-dependency. Tested against refined numerical solutions and data from a laboratory experiment, the model provided satisfactory results. Model limitations are discussed in view of applications to more complex, real urban layouts

    Modelling urban floods using a finite element staggered scheme with porosity and anisotropic resistance

    Get PDF
    Artificial porosity models for urban flooding use porosity as a statistical descriptor for the presence of buildings, which are then treated as subgridscale features. Computational efficiency makes porosity models attractive for large-scale applications. These models are typically implemented in the framework of two-dimensional (2D) finite volume collocated schemes. The most effective schemes, falling under the category of Integral Porosity models, allow accounting for a wealth of sub-grid processes, but they are known to suffer from oversensitivity to mesh design in the case of anisotropic porosity fields. In the present exploratory study, a dual porosity approach is implemented into a staggered finite element numerical model. The free surface elevation is defined at grid nodes, where continuity equation is solved; fluxes are conveyed by triangular cells, which act as 2D-links between adjacent grid nodes. The presence of building is modelled using an isotropic porosity in the continuity equation to account for the reduced water storage, and an anisotropic conveyance porosity in the momentum equations to compute bottom shear stress. Both porosities are defined on an element-by-element basis, thus avoiding mesh-dependency. Although suffering a number of limitations, the model shows promising results

    Horava-Lifshitz gravity with detailed balance

    Full text link
    Horava-Lifshitz gravity with "detailed balance" but without the projectability assumption is discussed. It is shown that detailed balance is quite efficient in limiting the proliferation of couplings in Horava-Lifshitz gravity, and that its implementation without the projectability assumption leads to a theory with sensible dynamics. However, the (bare) cosmological constant is restricted to be large and negative.Comment: Contribution to the proceedings of NEB 15 conference, Chania, 20-23 June 2012 (talk given by D.V.

    On the difference-to-sum power ratio of speech and wind noise based on the Corcos model

    Full text link
    The difference-to-sum power ratio was proposed and used to suppress wind noise under specific acoustic conditions. In this contribution, a general formulation of the difference-to-sum power ratio associated with a mixture of speech and wind noise is proposed and analyzed. In particular, it is assumed that the complex coherence of convective turbulence can be modelled by the Corcos model. In contrast to the work in which the power ratio was first presented, the employed Corcos model holds for every possible air stream direction and takes into account the lateral coherence decay rate. The obtained expression is subsequently validated with real data for a dual microphone set-up. Finally, the difference-to- sum power ratio is exploited as a spatial feature to indicate the frame-wise presence of wind noise, obtaining improved detection performance when compared to an existing multi-channel wind noise detection approach.Comment: 5 pages, 3 figures, IEEE-ICSEE Eilat-Israel conference (special session

    Asymmetric Dark Matter in the Sun and the Diphoton Excess at the LHC

    Full text link
    It has been recently pointed out that a momentum-dependent coupling of the asymmetric Dark Matter (ADM) with nucleons can explain the broad disagreement between helioseismological observables and the predictions of standard solar models. In this paper, we propose a minimal simplified ADM model consisting of a scalar and a pseudoscalar mediator, in addition to a Dirac fermionic DM, for generating such momentum-dependent interactions. Remarkably, the pseudoscalar with mass around 750 GeV can simultaneously explain the solar anomaly and the recent diphoton excess observed by both ATLAS and CMS experiments in the early s=13\sqrt s=13 TeV LHC data. In this framework, the total width of the resonance is naturally large, as suggested by the ATLAS experiment, since the resonance mostly decays to the ADM pair. The model predicts the existence of a new light scalar in the GeV range, interacting with quarks, and observable dijet, monojet and ttˉt\bar{t} signatures for the 750 GeV resonance at the LHC.Comment: 7 pages, 4 figures. Version to appear in PR

    Group field theories for all loop quantum gravity

    Full text link
    Group field theories represent a 2nd quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the GFT formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.Comment: version published in New Journal of Physic

    Gravity with Auxiliary Fields

    Full text link
    Modifications of General Relativity usually include extra dynamical degrees of freedom, which to date remain undetected. Here we explore the possibility of modifying Einstein's theory by adding solely nondynamical fields. With the minimal requirement that the theory satisfies the weak equivalence principle and admits a covariant Lagrangian formulation, we show that the field equations generically have to include higher-order derivatives of the matter fields. This has profound consequences for the viability of these theories. We develop a parametrization based on a derivative expansion and show that - to next to leading order - all theories are described by just two parameters. Our approach can be used to put stringent, theory-independent constraints on such theories, as we demonstrates using the Newtonian limit as an example.Comment: 5 pages, no figures; v2: clarifications and minor improvements, matches published versio

    QCD resummation for semi-inclusive hadron production processes

    Full text link
    We investigate the resummation of large logarithmic perturbative corrections to hadron production in electron-positron annihilation and semi-inclusive deep-inelastic scattering. We find modest, but significant, enhancements of hadron multiplicities in the kinematic regimes accessible in present high-precision experiments. Our results are therefore relevant for the determination of hadron fragmentation functions from data for these processes.Comment: 14 pages, 11 figure
    • …
    corecore