116 research outputs found

    Human cytomegalovirus-specific CD4+ and CD8+ T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection

    Get PDF
    Background Human cytomegalovirus infection is the most frequent viral complication in patients undergoing hematopoietic stem cell transplantation. We investigated the development of human cytomegalovirus-specific T cells in adult recipients of hematopoietic stem cell transplants. Design and Methods From May 2003 through October 2006 a total of 45 patients were monitored for human cytomegalovirus-specific T-cell reconstitution. Human cytomegalovirus-infected autologous dendritic cells were used as a stimulus to detect interferon-γ-producing human cytomegalovirus-specific CD8+ and CD4+ T cells during the first year after transplantation. Interleukin-2 production by specific T cells was also determined. ![Figure 1.][1] Figure 1. Probability of HCMV infection development and HCMV-specific CD4+ and CD8+ T-cell immunity reconstitution. A: cumulative incidence curves of HCMV infection according to donor (D) and recipient (R) HCMV-serostatus. B: cumulative incidence curves of HCMV infection and HCMV-specific CD8+ and CD4+ T-cell reconstitution (i.e. corresponding to a specific T-cell number greater than 0.4 cells/μL blood). C: cumulative incidence curves of HCMV-specific CD8+ T-cell reconstitution according to D/R HCMV-serostatus. D: cumulative incidence curves of HCMV-specific CD4+ T-cell reconstitution according to D/R HCMV-serostatus. Results Human cytomegalovirus infection was detected in the blood of 39/45 patients at a median of 29 days after transplantation. Human cytomegalovirus-specific T-cell reconstitution followed reactivation of latent human cytomegalovirus infection at a median time of about 2 months after transplantation. Only donor human cytomegalovirus-seronegativity and bone marrow as a stem cell source were found to delay specific T-cell reconstitution significantly. Levels of three CD8+ and one CD4+ human cytomegalovirus-specific T-cells/μL blood had a positive predictive value of around 80% for identifying patients able to control human cytomegalovirus infection spontaneously. Five patients who received high doses of steroids for treatment of graft-versus-host disease developed human cytomegalovirus infection requiring pre-emptive treatment despite high levels of interferon-γ-producing T cells in response to human cytomegalovirus. Specific interleukin-2 production was not detected in patients with human cytomegalovirus infection requiring treatment, while 90% of patients who spontaneously controlled human cytomegalovirus infection had T cells that produced interleukin-2 and interferon-γ. Conclusions Pre-transplant human cytomegalovirus infection of the recipient is a major factor driving human cytomegalovirus-specific immune reconstitution. Control of human cytomegalovirus infection likely requires the presence of both interferon-γ and interleukin-2 producing T cells. Corticosteroid treatment may favor active viral replication even in patients with specific T cells. [1]: pending:ye

    Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Get PDF
    BACKGROUND: Post-transplant lymphoproliferative disorder (PTLD) is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT); following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD), as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. CASE PRESENTATION: 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. CONCLUSION: The clinical and pathological findings were consistent with the diagnosis of PTLD

    Cytomegalovirus-Specific T Cell Epitope Recognition in Congenital Cytomegalovirus Mother-Infant Pairs

    Get PDF
    Background: Congenital cytomegalovirus (cCMV) infection is the most common infection acquired before birth and from which about 20% of infants develop permanent neurodevelopmental effects regardless of presence or absence of symptoms at birth. Viral escape from host immune control may be a mechanism of CMV transmission and infant disease severity. We sought to identify and compare CMV epitopes recognized by mother-infant pairs. We also hypothesized that if immune escape were occurring, then one pattern of longitudinal CD8 T cell responses restricted by shared HLA alleles would be maternal loss (by viral escape) and infant gain (by viral reversion to wildtype) of CMV epitope recognition. Methods: The study population consisted of 6 women with primary CMV infection during pregnancy and their infants with cCMV infection. CMV UL83 and UL123 peptides with known or predicted restriction by maternal MHC class I alleles were identified, and a subset was selected for testing based on several criteria. Maternal or infant cells were stimulated with CMV peptides in the IFN-gamma ELISpot assay. Results: Overall, 14 of 25 (56%; 8 UL83 and 6 UL123) peptides recognized by mother-infant pairs were not previously reported as CD8 T cell epitopes. Of three pairs with longitudinal samples, one showed maternal loss and infant gain of responses to a CMV epitope restricted by a shared HLA allele. Conclusions: CD8 T cell responses to multiple novel CMV epitopes were identified, particularly in infants. Moreover, the hypothesized pattern of CMV immune escape was observed in one mother-infant pair. These findings emphasize that knowledge of paired CMV epitope recognition allows exploration of viral immune escape that may operate within the maternal-fetal system. Our work provides rationale for future studies of this potential mechanism of CMV transmission during pregnancy or clinical outcomes of infants with cCMV infection

    Reconstitution of Human Cytomegalovirus-Specific CD4+ T Cells is Critical for Control of Virus Reactivation in Hematopoietic Stem Cell Transplant Recipients but Does Not Prevent Organ Infection

    Get PDF
    The relative contribution of human cytomegalovirus (HMCV)-specific CD4(+) and CD8(+) T cells to the control of HCMV infection in hematopoietic stem cell transplant (HSCT) recipients is still controversial. HCMV reactivation and HCMV-specific CD4(+) and CD8(+) T cell reconstitution were monitored for 1 year in 63 HCMV-seropositive patients receiving HSCT. HCMV reactivation was detected in all but 2 patients. In 20 of 63 (31.7%) patients (group 1) HCMV infection resolved spontaneously, whereas 32 of 63 (50.8%) patients (group 2) controlled the infection after a single short-course of pre-emptive therapy and the remaining 9 (14.3%) patients (group 3) suffered from relapsing episodes of HCMV infection, requiring multiple courses of antiviral therapy. The kinetics and magnitude of HCMV-specific CD8(+) T cell reconstitution were comparable among the 3 groups, but HCMV-specific CD4(+) T cells were lower in number in patients requiring antiviral treatment. HCMV-seronegative donors, as well as unrelated donors (receiving antithymocyte globulin) and acute graft-versus-host disease (GVHD) were associated with both delayed HCMV-specific CD4(+) T cell reconstitution and severity of infection. Conversely, these risk factors had no impact on HCMV-specific CD8(+) T cells. Eight patients with previous GVHD suffered from HCMV gastrointestinal disease, although in the presence of HCMV-specific CD4(+) and CD8(+) systemic immunity and undetectable HCMV DNA in blood. Reconstitution of systemic HCMV-specific CD4(+) T cell immunity is required for control of HCMV reactivation in adult HSCT recipients, but it may not be sufficient to prevent late-onset organ localization in patients with GVHD. HCMV-specific CD8(+) T cells contribute to control of HCMV infection, but only after HCMV-specific CD4(+) T cell reconstitution

    Sustained impairment of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cell response is responsible for recurrent episodes of disseminated HCMV infection in a D+R- hand transplant recipient

    Get PDF
    Human cytomegalovirus (HCMV) infection is the major viral complication in solid organ transplant recipients. Seronegative recipents (R-) of organs from seropositive donors (D+) appear to be at higher risk of developing symptomatic HCMV infection. To what extent systemic life-threatening complications can be risked for non-life-saving transplant procedures? A case report describing successful treatment of repeated episodes of active HCMV infection in a D+R- hand recipient in the absence of HCMV-specific T-cell immunity is presented. In the attempt to save both the patient and the transplanted hand, a preemptive treatment strategy was adopted with the aim to boost the constitution of the virus-specific T-cell immune response and simultaneously avoid onset of disease. Careful monitoring of HCMV load in blood and HCMV-specific T-cell immunity guided administration of repeated courses of antiviral treatment and avoided emergence of HCMV-related symptoms. Following establishment of HCMV-specific CD4+ and CD8+ T-cell response, preemptive treatment was no longer required due to sustained HCMV disappearance from blood. The patient is now well, and his hand too. In conclusion, evaluation of virus-specific T-cell immunity is of crucial importance in D+R- transplant recipients and careful monitoring of HCMV-specific T cell mediated response should always parallel monitoring of HCMV load in transplant recipients

    Phenotype and specificity of T cells in primary human cytomegalovirus infection during pregnancy: IL-7Rpos long-term memory phenotype is associated with protection from vertical transmission

    Get PDF
    Congenital human cytomegalovirus (HCMV) infection is the major cause of birth defects and a precise definition of the HCMV-specific T-cell response in primary infection may help define reliable correlates of immune protection during pregnancy. In this study, a high throughput method was used to define the frequency of CD4+ and CD8+ T cells specific for four HCMV proteins in the naïve compartment of seronegative subjects and the effector/memory compartments of subjects with primary/remote HCMV infection. The naïve repertoire displayed comparable frequencies of T cells that were reactive with HCMV structural (pp65, gB and the pentamer gHgLpUL128L) and non-structural (IE-1) proteins. Whereas, following natural infection, the majority of effector/memory CD4+ and CD8+ T cells recognized either gB or IE-1, respectively, and pp65. The pattern of T cell reactivity was comparable at early and late stages of infection and in pregnant women with primary HCMV infection transmitting or not transmitting the virus to the fetus. At an early stage of primary infection, about 50% of HCMV-reactive CD4+ T cells were long- term IL-7Rpos memory cells, while 6–12 months later, the frequency of these cells increased to 70%, approaching 100% in remote infections. In contrast, only 10–20% of HCMV-specific CD8+ T cells were long-term memory cells up to 12 months after infection onset, thereafter increasing to 70% in remote infections. Interestingly, a significantly higher frequency of HCMV-specific CD4+ T cells with a long-term IL-7Rpos memory phenotype was observed in non-transmitting compared to transmitting women. These findings indicate that immunodominance in HCMV infection is not predetermined in the naïve compartment, but is the result of virus-host interactions and suggest that prompt control of HCMV infection in pregnancy is associated with the rapid development of long-term IL-7Rpos memory HCMV- specific CD4+ T cells and a low risk of virus transmission to the fetus

    Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection

    Get PDF
    Primary human cytomegalovirus (HCMV) infections during pregnancy are associated with a high risk of virus transmission to the fetus. To identify correlates of intrauterine HCMV transmission, serial serum samples from HCMV transmitter and non-transmitter pregnant women with primary HCMV infection were analyzed for the presence of neutralizing antibodies against different glycoproteins and glycoprotein complexes, which are known to mediate entry into distinct types of host cells. Neutralizing activity was detected in the sera early after primary infection; absorption with a soluble pentameric complex formed by gH/gL/pUL128-131, but not with gH/gL dimer or with gB, abolished the capacity of sera to neutralize infection of epithelial cells. Importantly, an early, high antibody response to pentamer antigenic sites was associated with a significantly reduced risk of HCMV transmission to the fetus. This association is consistent with the high in vitro inhibition of HCMV infection of epithelial/endothelial cells as well as cell- to-cell spreading and virus transfer to leukocytes by anti-pentamer antibodies. Taken together, these findings indicate that the HCMV pentamer complex is a major target of the antibody-mediated maternal immunity

    Detection of genotype-specific antibody responses to glycoproteins B and H in primary and non-primary human cytomegalovirus infections by peptide-based ELISA

    Get PDF
    Background: Strain-specific antibodies to human cytomegalovirus (HCMV) glycoproteins B and H (gB and gH) have been proposed as a potential diagnostic tool for identifying reinfection. We investigated genotype-specific IgG antibody responses in parallel with defining the gB and gH genotypes of the infecting viral strains. Methods: Subjects with primary (n = 20) or non-primary (n = 25) HCMV infection were studied. The seven gB (gB1-7) and two gH (gH1-2) genotypes were determined by real-time PCR and whole viral genome sequencing, and genotype-specific IgG antibodies were measured by a peptide-based enzyme-linked immunosorbent assay (ELISA). Results: Among subjects with primary infection, 73% (n = 8) infected by gB1-HCMV and 63% (n = 5) infected by gB2/3-HCMV had genotype-specific IgG antibodies to gB (gB2 and gB3 are similar in the region tested). Peptides from the rarer gB4-gB7 genotypes had nonspecific antibody responses. All subjects infected by gH1-HCMV and 86% (n = 6/7) infected by gH2-HCMV developed genotype-specific responses. Among women with non-primary infection, gB and gH genotype-specific IgG antibodies were detected in 40% (n = 10) and 80% (n = 20) of subjects, respectively. Conclusions: Peptide-based ELISA is capable of detecting primary genotype-specific IgG responses to HCMV gB and gH, and could be adopted for identifying reinfections. However, about half of the subjects did not have genotype-specific IgG antibodies to gB

    Identifying high-confidence variants in human cytomegalovirus genomes sequenced from clinical samples

    Get PDF
    Understanding the intrahost evolution of viral populations has implications in pathogenesis, diagnosis and treatment, and has recently made impressive advances from developments in high-throughput sequencing. However, the underlying analyses are very sensitive to sources of bias, error and artefact in the data, and it is important that these are addressed adequately if robust conclusions are to be drawn. The key factors include: (i) determining the number of viral strains present in the sample analysed; (ii) monitoring the extent to which the data represent these strains and assessing the quality of these data; (iii) dealing with the effects of cross-contamination; and (iv) ensuring that the results are reproducible. We investigated these factors by generating sequence datasets, including biological and technical replicates, directly from clinical samples obtained from a small cohort of patients who had been infected congenitally with the herpesvirus human cytomegalovirus, with the aim of developing a strategy for identifying high-confidence intrahost variants. We found that such variants were few in number and typically present in low proportions, and concluded that human cytomegalovirus exhibits a very low level of intrahost variability. In addition to clarifying the situation regarding human cytomegalovirus, our strategy has wider applicability to understanding the intrahost variability of other viruses

    Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies

    Get PDF
    The use of neutralizing antibodies to identify the most effective antigen has been proposed as a strategy to design vaccines capable of eliciting protective B-cell immunity. In this study, we analyzed the human antibody response to cytomegalovirus (human cytomegalovirus, HCMV) infection and found that antibodies to glycoprotein (g)B, a surface glycoprotein that has been developed as a HCMV vaccine, were primarily nonneutralizing. In contrast, most of the antibodies to the complex formed by gH, gL, protein (p)UL128, pUL130, and pUL131 (the gHgLpUL128L pentamer) neutralized HCMV infection with high potency. Based on this analysis, we developed a single polycistronic vector encoding the five pentamer genes separated by “self-cleaving” 2A peptides to generate a stably transfected CHO cell line constitutively secreting high levels of recombinant pentamer that displayed the functional antigenic sites targeted by human neutralizing antibodies. Immunization of mice with the pentamer formulated with different adjuvants elicited HCMV neutralizing antibody titers that persisted to high levels over time and that were a hundred- to thousand-fold higher than those found in individuals that recovered from primary HCMV infection. Sera from mice immunized with the pentamer vaccine neutralized infection of both epithelial cells and fibroblasts and prevented cell-to-cell spread and viral dissemination from endothelial cells to leukocytes. Neutralizing monoclonal antibodies from immunized mice showed the same potency as human antibodies and targeted the same as well as additional sites on the pentamer. These results illustrate with a relevant example a general and practical approach of analytic vaccinology for the development of subunit vaccines against complex pathogens
    corecore