274 research outputs found

    Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis.

    Get PDF
    A new series of fluorine containing 1,3,5-triazinyl sulfonamide derivatives obtained from cyanuric fluoride, sulfanilamide/4-aminoethylbenzenesulfonamide followed and incorporating also amin0, amino alcohol and amino acid moieties have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were efficiently inhibited by these sulfonamides with KI values in the nanomolar or submicromolar range, depending on the substitution of one or both fluorine atoms at the 1,3,5-triazine ring. As some of these enzymes are crucial for the life cycle of this bacterium, the class of β-CA inhibitors reported in this study may lead to antimycobacterial agents with a different mechanism of action compared to the clinically used such drugs for which the pathogen developed extensive drug resistance

    Inhibition of the alpha- and beta-carbonic anhydrases from the gastric pathogen Helycobacter pylori with anions

    Get PDF
    The gastric pathogen Helicobacter pylori encodes two carbonic anhydrases (CAs, EC 4.2.1.1), an α- and a β-class one, hpαCA and hpβCA, crucial for its survival in the acidic environment from the stomach. Sulfonamides, strong inhibitors of these enzymes, block the growth of the pathogen, in vitro and in vivo. Here we report the inhibition of the two H. pylori CAs with inorganic and complex anions and other molecules interacting with zinc proteins. hpαCA was inhibited in the low micromolar range by diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic acid, and in the submillimolar one by cyanide, cyanate, hydrogen sulfide, divanadate, tellurate, perruthenate, selenocyanide, trithiocarbonate, iminodisulfonate. hpβCA generally showed a stronger inhibition with most of these anions, with several low micromolar and many submillimolar inhibitors detected. These inhibitors may be used as leads for developing anti-H. pylori agents with a diverse mechanism of action compared to clinically used antibiotics

    Natural product polyamines that inhibit human carbonic anhydrases

    Get PDF
    Natural product compound collections have proven an effective way to access chemical diversity and recent findings have identified phenolic, coumarin, and polyamine natural products as atypical chemotypes that inhibit carbonic anhydrases (CAs). CA enzymes are implicated as targets of variable drug therapeutic classes and the discovery of selective, drug-like CA inhibitors is essential. Just two natural product polyamines, spermine and spermidine, have until now been investigated as CA inhibitors. In this study, five more complex natural product polyamines 1–5, derived from either marine sponge or fungi, were considered for inhibition of six different human CA isozymes of interest in therapeutic drug development. All compounds share a simple polyamine core fragment, either spermine or spermidine, yet display substantially different structure activity relationships for CA inhibition. Notably, polyamines 1–5 were submicromolar inhibitors of the cancer drug target CA IX, this is more potent than either spermine or spermidine

    Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids

    Get PDF
    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance

    Natural product coumarins that inhibit human carbonic anhydrases.

    Get PDF
    Natural products (NPs) have proven to be an invaluable source of new chemotherapies yet very few have been explored to source small molecule carbonic anhydrase (CA) inhibitors. CA enzymes underpin physiological pH and are critical to the progression of several diseases including cancer. The present study is the first to more widely investigate NP coumarins for CA inhibition following the recent discovery of a NP coumarin CA inhibitor. We assembled a NP library comprising 24 plant coumarins (compounds 4-27) and three ascidian coumarins (compounds 28-30) that together provide a diverse collection of structures containing the coumarin pharmacophore. This library was then evaluated for inhibition of six human CA isozymes (CAs I, II, VII, IX, XII and XIII) and a broad range of inhibition and isozyme selectivity profiles were evident. Our findings provide a platform to support further evaluation of NPs for the discovery of new chemotypes that inhibit disease relevant CA enzymes.Full Tex

    Pseudo-outbreak of Mycobacterium gordonae in a teaching hospital: importance of strictly following decontamination procedures and emerging issues concerning sterilization

    Get PDF
    Aim of this study was to investigate a pseudo-outbreak of Mycobacterium gordonae analyzing isolates detected from clinical and environmental samples. Mycobacterium gordonae was detected in 7 out of 497 broncho-alveolar lavage (BAL) samples after bronchoscopy procedure in patients admitted to a teaching hospital between January and April 2013. During this pseudo-outbreak clinical, epidemiological, environmental and molecular investigations were performed. None of the patients met the criteria for non-tuberculous mycobacterial (NTM) lung disease and were treated for M. gordonae lung disease. Environmental investigation revealed M. gordonae in 3 samples: in tap water and in the water supply channel of the washer disinfector. All the isolates were subjected to genotyping by pulsed-field gel electrophoresis (PFGE). The PFGE revealed that only patients' isolates presented the same band pattern but no correlation with the environmental strain was detected. Surveillance of the outbreak and the strict adherence to the reprocessing procedure and its supplies resulted afterwards in no detection of M. gordonae in clinical respiratory samples. Clinical surveillance of patients was crucial to establish the start of NTM treatment. Regular screening of tap water and endoscopic equipment should be adopted to compare the clinical strains with the environmental ones when an outbreak occurs
    • …
    corecore