29 research outputs found

    Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer’s Disease in Transgenic Mice at Different Ages

    Get PDF
    Abstract Backgroud: Alzheimer disease is an age-related severe neurodegenerative pathology. The level of the third endogenous gas, hydrogen sulfide (H2S), is decreased in the brain of Alzheimer’s disease (AD) patients compared with the brain of the age-matched normal individuals; also, plasma H2S levels are negatively correlated with the severity of AD. Recently, we have demonstrated that systemic H2S injections are neuroprotective in an early phase of preclinical AD. Objectives: This study focuses on the possible neuroprotection of a chronic treatment with an H2S donor and sulfurous water (rich of H2S) in a severe transgenic 3×Tg-AD mice model. Method: 3×Tg-AD mice at 2 different ages (6 and 12 months) were daily treated intraperitoneally with an H2S donor and sulfurous water (rich of H2S) for 3 months consecutively. We investigated the cognitive ability, brain morphological alterations, amyloid/tau cascade, excitotoxic, inflammatory and apoptotic responses. Results: Three months of treatments with H2S significantly protected against impairment in learning and memory in a severe 3×Tg-AD mice model, at both ages studied, and reduced the size of Amyloid β plaques with preservation of the morphological picture. This neuroprotection appeared mainly in the cortex and hippocampus, associated with reduction in activity of c-jun N-terminal kinases, extracellular signal-regulated kinases and p38, which have an established role not only in the phosphorylation of tau protein but also in the inflammatory and excitotoxic response. Conclusion: Our findings indicate that appropriate treatments with various sources of H2S, might represent an innovative approach to counteract early and severe AD progression in humans

    Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo

    Get PDF
    Here, the authors report on the manufacturing and in vivo assessment of a bioresorbable nanostructured pH sensor. The sensor consists of a micrometer-thick porous silica membrane conformably coated layer-by-layer with a nanometer-thick multilayer stack of two polyelectrolytes labeled with a pH-insensitive fluorophore. The sensor fluorescence changes linearly with the pH value in the range 4 to 7.5 upon swelling/shrinking of the polymer multilayer and enables performing real-time measurements of the pH level with high stability, reproducibility, and accuracy, over 100 h of continuous operation. In vivo studies carried out implanting the sensor in the subcutis on the back of mice confirm real-time monitoring of the local pH level through skin. Full degradation of the pH sensor occurs in one week from implant in the animal model, and its biocompatibility after 2 months is confirmed by histological and fluorescence analyses. The proposed approach can be extended to the detection of other (bio)markers in vivo by engineering the functionality of one (at least) of the polyelectrolytes with suitable receptors, thus paving the way to implantable bioresorbable chemical sensors

    Evaluation of Two-Month Antibody Levels after Heterologous ChAdOx1-S/BNT162b2 Vaccination Compared to Homologous ChAdOx1-S or BNT162b2 Vaccination

    Get PDF
    none11noWe evaluated the post-vaccination humoral response of three real-world cohorts. Vaccinated subjects primed with ChAdOx1-S and boosted with BNT162b2 mRNA vaccine were compared to homologous dosing (BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S). Serum samples were collected two months after vaccination from a total of 1248 subjects. The results showed that the heterologous vaccine schedule induced a significantly higher humoral response followed by homologous BNT162b2/BNT162b2 and ChAdOx1-S/ChAdOx1-S vaccines (p < 0.0001). Moreover, analyzing factors (i.e., vaccine schedule, sex, age, BMI, smoking, diabetes, cardiovascular diseases, respiratory tract diseases, COVID-19 diagnosis, vaccine side effects) influencing the IgG anti-S response, we found that only the type of vaccine affected the antibody titer (p < 0.0001). Only mild vaccine reactions resolved within few days (40% of subjects) and no severe side effects for either homologous groups or the heterologous group were reported. Our data support the use of heterologous vaccination as an effective and safe alternative to increase humoral immunity against COVID-19.openBarocci, Simone; Orlandi, Chiara; Diotallevi, Aurora; Buffi, Gloria; Ceccarelli, Marcello; Vandini, Daniela; Carlotti, Eugenio; Galluzzi, Luca; Rocchi, Marco Bruno Luigi; Magnani, Mauro; Casabianca, AnnaBarocci, Simone; Orlandi, Chiara; Diotallevi, Aurora; Buffi, Gloria; Ceccarelli, Marcello; Vandini, Daniela; Carlotti, Eugenio; Galluzzi, Luca; Rocchi, Marco Bruno Luigi; Magnani, Mauro; Casabianca, Ann

    Identification of a Thyroid Hormone Derivative as a Pleiotropic Agent for the Treatment of Alzheimer's Disease.

    Get PDF
    The identification of effective pharmacological tools for Alzheimer's disease (AD) represents one of the main challenges for therapeutic discovery. Due to the variety of pathological processes associated with AD, a promising route for pharmacological intervention involves the development of new chemical entities that can restore cellular homeostasis. To investigate this strategy, we designed and synthetized SG2, a compound related to the thyroid hormone thyroxine, that shares a pleiotropic activity with its endogenous parent compound, including autophagic flux promotion, neuroprotection, and metabolic reprogramming. We demonstrate herein that SG2 acts in a pleiotropic manner to induce recovery in a C. elegans model of AD based on the overexpression of Aβ42 and improves learning abilities in the 5XFAD mouse model of AD. Further, in vitro ADME-Tox profiling and toxicological studies in zebrafish confirmed the low toxicity of this compound, which represents a chemical starting point for AD drug development

    Sostenere la ri essivit\ue0 di educatori e insegnanti attraverso la video-analisi per creare contesti inclusivi: lo studio di caso italiano

    No full text
    Il caso italiano intende ripensare gli strumenti di formazione in servizio e la supervisione pedagogica, al ne di promuovere pratiche educative innovative e inclusive nei servizi per la prima infanzia. L\u2019obiettivo \ue8 di promuovere il protagonismo dei bambini provenienti da diversi background socioculturali all\u2019interno dei processi educativi. La ricerca \ue8 resa particolarmente urgente in Italia dalla nuova normativa sull\u2019istituzione del sistema integrato di educazione e istruzione dalla nascita no a sei anni (D.L. 65/2017). Il caso di studio si concentra su due servizi per l\u2019infanzia situati nel comune di Bologna e intende far luce su come l\u2019utilizzo dei video possa sostenere la ri essivit\ue0 dei gruppi di lavoro all\u2019interno dei servizi per l\u2019infanzia in una prospettiva inclusiva

    Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19?

    No full text
    The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several "converging" evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1-7 and Ang 1-9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome

    NDP-\u3b1-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors

    No full text
    Melanocortins exert neuroprotection in a variety of experimental neurodegenerative disorders, including Alzheimer's disease (AD). Further, in previous research we showed that these endogenous peptides stimulate neurogenesis in an acute neurodegenerative disorder such as ischemic stroke. In the present research, we investigated the potential neurogenic effect of melanocortins in AD using APPSwe transgenic mice (Tg2576). To this purpose, 24week-old animals were prepared for 5-bromo-2'-deoxyuridine (BrdU) labeling of proliferating cells on days 1-11 of the study. Treatment of Tg2576 mice with nanomolar doses of the melanocortin analog [Nle(4),D-Phe(7)]\u3b1-melanocyte-stimulating hormone (NDP-\u3b1-MSH), administered once daily from day 1 to 50, improved brain histology and cognitive functions relative to saline-treated Tg2576 animals. No signs of toxicity were observed. Immunohistochemical examination of the hippocampus at the end of the study (day 50) showed that NDP-\u3b1-MSH-treated Tg2576 mice had a greater number of BrdU immunoreactive cells colocalized with NeuN (an indicator of mature neurons) and Zif268 (an indicator of functionally integrated neurons) in the dentate gyrus, relative to saline-treated Tg2576 animals; no newly formed astrocytes were found. Animal pretreatment with selective melanocortin MC4 receptor antagonist HS024 before each NDP-\u3b1-MSH administration prevented all the beneficial effects of the peptide. The present data indicate that MC4 receptor stimulation by a melanocortin prevents cognitive decline in experimental AD, this effect being associated not only with neuroprotection but also with an intense neurogenesis. MC4 receptor agonists could be innovative and safe candidates to counteract AD progression in humans

    Circulating ACE2 level and zinc/albumin ratio as potential biomarkers for a precision medicine approach to COVID-19

    No full text
    Highly mutable influenza is successfully countered based on individual susceptibility and similar precision-like medicine approach should be effective against SARS-COV-2. Among predictive markers to bring precision medicine to COVID-19, circulating ACE2 has potential features being upregulated in both severe COVID-19 and predisposing comorbidities. Spike SARS-CoVs were shown to induce ADAM17-mediated shedding of enzymatic active ACE2, thus accounting for its increased activity that has also been suggested to induce positive feedback loops leading to COVID-19-like manifestations. For this reason, pre-existing ACE2 activity and inhibition of ACE2/ADAM17 zinc-metalloproteases through zinc chelating agents have been proposed to predict COVID-19 outcome before infection and to protect from COVID-19, respectively. Since most diagnostic laboratories are not equipped for enzymatic activity determination, other potential predictive markers of disease progression exploitable by diagnostic laboratories were explored. Concentrations of circulating albumin, zinc, ACE2 protein and its activity were investigated in healthy, diabetic (COVID-19-susceptible) and SARS-CoV-2-negative COVID-19 individuals. ACE2 both protein levels and activity significantly increased in COVID-19 and diabetic patients. Abnormal high levels of ACE2 characterised a subgroup (16–19%) of diabetics, while COVID-19 patients were characterised by significantly higher zinc/albumin ratios, pointing to a relative increase of albumin-unbound zinc species, such as free zinc ones. Data on circulating ACE2 levels are in line with the hypothesis that they can drive susceptibility to COVID-19 and elevated zinc/albumin ratios support the therapeutic use of zinc chelating inhibitors of ACE2/ADAM17 zinc-metalloproteases in a targeted therapy for COVID-19

    Il sistema di sanificazione PCHS Probiotic Cleaning Hygien System: risultati delle indagini sperimentali in vitro e in campo

    No full text
    Lo scopo principale delle procedure di sanificazione è inerente alla riduzione/eliminazione dei microrganismi presenti sulle superfici degli ambienti ospedalieri. Poiché è noto che i potenziali patogeni possono sviluppare resistenze sia agli antibiotici che ai disinfettanti chimici usati nelle comuni pratiche di pulizia, sono stati condotti studi sperimentali all’interno di strutture ospedaliere, con il fine di verificare l’efficacia di innovativi prodotti sanificanti a base di probiotici. Tali prodotti vengono utilizzati nell’ambito di un sistema integrato di gestione delle pratiche di sanificazione denominato PCHS. Nel lavoro vengono esposti i risultati ottenuti con questo protocollo di pulizia e vengono confrontati con gli analoghi risultati ottenibili mediante l’impiego di prodotti disinfettanti tradizionali
    corecore