134 research outputs found

    Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems.

    Get PDF
    BACKGROUND: Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs), this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK) and invariant NKT (iNKT) cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. RESULTS: NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked') with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. CONCLUSIONS: These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system) direct secretory lysosomes to the immunological synapse. Morphologically, the overall structure of the immunological synapses formed by NK and iNKT cells are very similar to those formed by CTLs, with both exocytic and endocytic organelles polarised towards the centrosome at the plasma membrane, which forms a focal point for exocytosis and endocytosis within the immunological synapse. We conclude that centrosomal polarisation provides a rapid, responsive and precise mechanism for secretory lysosome delivery to the immunological synapse in CTLs, NK cells and iNKT cells.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor

    Get PDF
    Abstract Natural killer (NK) cells were recently shown to play a relevant role in the process of dendritic cell (DC) maturation. This function is exerted either by direct DC stimulation or through killing those DCs that did not properly acquire a mature phenotype. While killing of immature DCs is dependent on the function of the NKp30 triggering receptor, the mechanism by which NK cells induce DC maturation is still unclear. In this study, we show that also the NK-mediated induction of DC maturation is dependent on NKp30. Upon NK/DC interaction, resulting in NKp30 engagement, NK cells produced tumor necrosis factor α (TNFα) (and interferon γ [IFNγ]) that, in turn, promoted DC maturation. Masking of NKp30 with specific monoclonal antibodies (mAbs) strongly reduced maturation of DCs cocultured with NK cells. In addition, supernatant from NK cells stimulated via NKp30 induced DC maturation, and this effect was neutralized by anti-TNFα antibodies (Abs). This NKp30 function is controlled by the HLA-specific inhibitory NK receptors. Accordingly, the ability to promote maturation was essentially confined to NK cells expressing the killer immunoglobulin-like receptor–negative (KIR–) NKG2Adull phenotype. Finally, the analysis of perforin-deficient NK cells allowed the dissection of the 2 NKp30-mediated NK-cell functions, since NKp30 could induce cytokine-dependent DC maturation in the absence of NK-mediated DC killing

    Analysis of natural killer–cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease

    Get PDF
    Abstract Natural killer (NK) cells from patients with familial hemophagocytic lymphohistiocytosis because of PRF1 (FHL2, n = 5) or MUNC13-4 (FHL3, n = 8) mutations were cultured in IL-2 prior to their use in various functional assays. Here, we report on the surface CD107a expression as a novel rapid tool for identification of patients with Munc13-4 defect. On target interaction and degranulation, FHL3 NK cells displayed low levels of surface CD107a staining, in contrast to healthy control subjects or perforin-deficient NK cells. B-EBV cell lines and dendritic cell targets reveal the FHL3 NK-cell defect, whereas highly susceptible tumor targets were partially lysed by FHL3 NK cells expressing only trace amounts of Munc13-4 protein. Perforin-deficient NK cells were completely devoid of any ability to lyse target cells. Cytokine production induced by mAb-crosslinking of triggering receptors was comparable in patients and healthy control subjects. However, when cytokine production was induced by coculture with 721.221 B-EBV cells, FHL NK cells resulted in high producers, whereas control cells were almost ineffective. This could reflect survival versus elimination of B-EBV cells (ie, the source of NK-cell stimulation) in patients versus healthy control subjects, thus mimicking the pathophysiologic scenario of FHL

    Ovine CD16+/CD14− blood lymphocytes present all the major characteristics of natural killer cells

    Get PDF
    Natural killer (NK) cells have a key role in the innate immune response against pathogens because of their cytotoxic properties and production of interferon-gamma (IFN-γ). Some insight into ruminant NK cell biology has been gained through the characterization of bovine NK cells as NKp46+/CD3− cells. However, ovine NK cells have been little studied because of the lack of specific antibodies. Most NK cells in humans and cattle express CD16. We found that an antibody against human CD16 that cross-reacts with bovine NK cells also recognizes cell populations in ovine peripheral blood mononuclear cells. Using double labelling with CD14 revealed the same profile as described in other species, and we identified a putative NK cell population. We therefore sorted this ovine CD16+/CD14− cell population and tested it for NK cell characteristics. More than 80% of sorted CD16+/CD14− cells expressed perforin. After a week of culture in the presence of IL-2 and IL-15, ovine CD16+/CD14− cells had become large cells with intra-cytoplasmic granules containing perforin, and the vast majority displayed an activated CD2−/low/CD25+/CD8+ phenotype, as observed for bovine NKp46+/CD3− cells. Moreover, these cells expressed transcripts for the NKp46 receptor, and were cytotoxic in a CD16-mediated redirected lysis assay against a murine cell line, P815, and in a direct lysis assay against the ovine cell line, IDO5. Finally, ovine CD16+/CD14− cells having expanded for 7 days in culture secreted IFN-γ in response to IL-12 in a dose-dependent manner. Taken together, these findings led us to conclude that the ovine CD16+/CD14− lymphocyte sub-population displays the phenotype and functional characteristics of NK cells

    Familial Hemophagocytic Lymphohistiocytosis May Present during Adulthood: Clinical and Genetic Features of a Small Series

    Get PDF
    Familial Hemophagocytic lymphohistiocytosis (FHL) is a rare immune deficiency with defective cytotoxic function. The age at onset is usually young and the natural course is rapidly fatal if untreated. A later onset of the disease has been sporadically reported even in adolescents and adults. We report the results of our retrospective data collection of all cases diagnosed with FHL at an age of 18 years or older and enrolled in the Italian Registry of HLH. All cases were diagnosed with FHL based on evidence of genetic defect in one FHL-related gene. A total of 11 patients were diagnosed with FHL. They were 9 males and 2 females, from 10 unrelated families; their age ranged between 18 and 43 years (median, 23 years). Family history was unremarkable in eight families at the time of the diagnosis. Their genetic diagnoses are: FHL2 (n = 6), FHL3 (n = 2), FHL5 (n = 1), XLP1 (n = 2). Clinical, molecular and functional data are described. These data confirm that FHL may present beyond the pediatric age and up to the fifth decade. FHL2 due to perforin defect is the most frequently reported subtype. Adult specialists should consider FHL in the differential diagnosis of patients with cytopenia and liver or central nervous system disorders, especially when a lymphoproliferative disease is suspected but eventually not confirmed. FHL may turn to be fatal within a short time course even in adults. This risk, together with the continuous improvement in the transplant technique, especially in the area of transplant from matched unrelated donor, resulting in reduced treatment related mortality, might suggest a wider use of SCT in this population. Current diagnostic approach allows prompt identification of patients by flow-cytometry screening, then confirmed by the genetic study, and treatment with chemo-immunotherapy followed by stem cell transplantation

    Natural Killer and NK-Like T-Cell Activation in Colorectal Carcinoma Patients Treated with Autologous Tumor-Derived Heat Shock Protein 96

    Get PDF
    Heat shock proteins (HSPs) are involved in the activation of both adaptive and innate immune systems. Here, we report that vaccination with autologous tumor-derived HSP96 of colorectal cancer patients, radically resected for liver metastases, induced a significant boost of natural killer (NK) activity detected as cytokine secretion and cytotoxicity in the presence of NK-sensitive targets. Increased NK activity was associated with a raise in CD3−CD56+ NK and/or CD3+CD56+ NK-like T cells, displaying enhanced expression of NKG2D and/or NKp46 receptors. Up-regulated expression of CD83 and CD40 and increased interleukin-12 release on stimulation were observed in CD14+ cells from post-HSP96 peripheral blood mononuclear cells, suggesting an indirect pathway of NK stimulation by HSP96-activated monocytes. Additionally, CD3−CD56+ and CD3+CD56+ lymphocytes were found to undergo functional and phenotypic activation on in vitro exposure to HSP96 even in the absence of monocytes, supporting a potential direct activity of HSP96 on these cell subsets. This evidence was confirmed by the specific binding of FITC-conjugated HSP96 to a subset of both CD3−CD56+ and CD3+CD56+ cells in peripheral blood mononuclear cells from colorectal cancer patients. Altogether, these findings identify the activation of the NK compartment as an additional immunologic effect of autologous tumor-derived HSP96 administration in cancer patients

    NK cells and ILCs in tumor immunotherapy

    Get PDF
    Abstract Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer

    Susceptibility of Human Melanoma Cells to Autologous Natural Killer (NK) Cell Killing: HLA-Related Effector Mechanisms and Role of Unlicensed NK Cells

    Get PDF
    BACKGROUND: Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting. METHODOLOGY/PRINCIPAL FINDINGS: We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved. Since self HLA class I molecules normally play a protective role from NK cell-mediated attack, we analyzed HLA class I expression on melanomas in comparison to autologous lymphocytes. We found that melanoma cells presented specific allelic losses in 50% of the patients analyzed. In addition, CD107a degranulation assays applied to NK cells expressing a single inhibitory receptor, revealed that, even when expressed, specific HLA class I molecules are present on melanoma cell surface in amount often insufficient to inhibit NK cell cytotoxicity. Remarkably, upon activation, also the so called "unlicensed" NK cells, i.e. NK cells not expressing inhibitory receptor specific for self HLA class I molecules, acquired the capability of efficiently killing autologous melanoma cells, thus additionally contributing to the lysis by a mechanism independent of HLA class I expression on melanoma cells. CONCLUSIONS/SIGNIFICANCE: We have investigated in details the mechanisms controlling the recognition and lysis of melanoma cells by autologous NK cells. In these autologous settings, we demonstrated an efficient in vitro killing upon NK cell activation by mechanisms that may be related or not to abnormalities of HLA class I expression on melanoma cells. These findings should be taken into account in the design of novel immunotherapy approaches against melanoma

    Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation

    Get PDF
    Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early '90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class Ineg tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy

    An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More

    Get PDF
    Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The \u201cmissing-self\u201d theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs)
    corecore