2,259 research outputs found

    Comprehensive analysis of the membrane phosphoproteome regulated by oligogalacturonides in Arabidopsis thaliana

    Get PDF
    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity

    Changes in the microsomal proteome of tomato fruit during ripening

    Get PDF
    The variations in the membrane proteome of tomato fruit pericarp during ripening have been investigated by mass spectrometry-based label-free proteomics. Mature green (MG30) and red ripe (R45) stages were chosen because they are pivotal in the ripening process: MG30 corresponds to the end of cellular expansion, when fruit growth has stopped and fruit starts ripening, whereas R45 corresponds to the mature fruit. Protein patterns were markedly different: among the 1315 proteins identified with at least two unique peptides, 145 significantly varied in abundance in the process of fruit ripening. The subcellular and biochemical fractionation resulted in GO term enrichment for organelle proteins in our dataset, and allowed the detection of low-abundance proteins that were not detected in previous proteomic studies on tomato fruits. Functional annotation showed that the largest proportion of identified proteins were involved in cell wall metabolism, vesicle-mediated transport, hormone biosynthesis, secondary metabolism, lipid metabolism, protein synthesis and degradation, carbohydrate metabolic processes, signalling and response to stress

    Dampening the DAMPs: how plants maintain the homeostasis of cell wall molecular patterns and avoid hyper-immunity

    Get PDF
    Several oligosaccharide fragments derived from plant cell walls activate plant immunity and behave as typical damage-associated molecular patterns (DAMPs). Some of them also behave as negative regulators of growth and development, and due to their antithetic effect on immunity and growth, their concentrations, activity, time of formation, and localization is critical for the so-called “growth-defense trade-off.” Moreover, like in animals, over accumulation of DAMPs in plants provokes deleterious physiological effects and may cause hyper-immunity if the cellular mechanisms controlling their homeostasis fail. Recently, a mechanism has been discovered that controls the activity of two well-known plant DAMPs, oligogalacturonides (OGs), released upon hydrolysis of homogalacturonan (HG), and cellodextrins (CDs), products of cellulose breakdown. The potential homeostatic mechanism involves specific oxidases belonging to the family of berberine bridge enzyme-like (BBE-like) proteins. Oxidation of OGs and CDs not only inactivates their DAMP activity, but also makes them a significantly less desirable food source for microbial pathogens. The evidence that oxidation and inactivation of OGs and CDs may be a general strategy of plants for controlling the homeostasis of DAMPs is discussed. The possibility exists of discovering additional oxidative and/or inactivating enzymes targeting other DAMP molecules both in the plant and in animal kingdoms

    HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes

    Get PDF
    Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7(+) cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion

    A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication

    Get PDF
    The crucial role of the immune system in hypertension is now widely recognized. We previously reported that hypertensive challenges couple the nervous drive with immune system activation, but the physiological and molecular mechanisms of this connection are unknown. Here, we show that hypertensive challenges activate splenic sympathetic nerve discharge to prime immune response. More specifically, a vagus-splenic nerve drive, mediated by nicotinic cholinergic receptors, links the brain and spleen. The sympathetic discharge induced by hypertensive stimuli was absent in both coeliac vagotomized mice and in mice lacking α7nAChR, a receptor typically expressed by peripheral ganglionic neurons. This cholinergic-sympathetic pathway is necessary for T cell activation and egression on hypertensive challenges. In addition, we show that selectively thermoablating the splenic nerve prevents T cell egression and protects against hypertension. This novel experimental procedure for selective splenic denervation suggests new clinical strategies for resistant hypertension

    Isolation and characterization of oxidizedoligogalacturonides: meccanism of dampening of damps

    Get PDF
    Oligogalacturonides (OGs) released upon partial degradation of homogalacturonan, are a well-known class of Damage-Associated Molecular Patterns (DAMPs). Besides inducing immunity, OGs negatively affect plant growth by antagonizing auxin responses. Because the recognition of DAMPs poses the intrinsic risk of activating an exaggerated response that may impair plant survival, dampening mechanisms of DAMPs should exist. Transgenic Arabidopsis plants (OGM plants) expressing a chimeric protein called "OGmachine" accumulate oligogalacturonides (OGs) in their tissues and exhibit enhanced resistance to a variety of pathogens; however the growth of these plants is severely impaired. The prolonged release of OGs triggers defense responses that in the long term are deleterious for the plant. We used the OGM plants as a tool to investigate a possible regulatory mechanism by searching for elicitor-inactive OGs that may derive from elicitor-active OGs through an enzymatic modification. By analyzing the OGs produced in the transgenic plants, modified OGs were isolated. The nature of the modification was investigated by electrospray ionization mass spectrometry and resulted to be the oxidation to galactaric acid of the residue at the reducing end of OGs (oxOGs). OxOGs were tested for their ability to induce defense responses and antagonize auxin responses. In all experiments, they were inactive as compared to the corresponding typical OGs. We succeeded to isolate and characterize one of the enzymes that causes the inactivation of OGs: it is a FAD binding oxidase, that we named OGOX1, capable of producing elicitor-inactive oxidized OGs and H2O2

    Detecting adherence to the recommended childhood vaccination schedule from user-generated content in a US parenting forum

    Get PDF
    Vaccine hesitancy is considered as one of the leading causes for the resurgence of vaccine preventable diseases. A non-negligible minority of parents does not fully adhere to the recommended vaccination schedule, leading their children to be partially immunized and at higher risk of contracting vaccine preventable diseases. Here, we leverage more than one million comments of 201,986 users posted from March 2008 to April 2019 on the public online forum BabyCenter US to learn more about such parents. For 32% with geographic location, we find the number of mapped users for each US state resembling the census population distribution with good agreement. We employ Natural Language Processing to identify 6884 and 10,131 users expressing their intention of following the recommended and alternative vaccination schedule, respectively RSUs and ASUs. From the analysis of their activity on the forum we find that ASUs have distinctly different interests and previous experiences with vaccination than RSUs. In particular, ASUs are more likely to follow groups focused on alternative medicine, are two times more likely to have experienced adverse events following immunization, and to mention more serious adverse reactions such as seizure or developmental regression. Content analysis of comments shows that the resources most frequently shared by both groups point to governmental domains (.gov). Finally, network analysis shows that RSUs and ASUs communicate between each other (indicating the absence of echo chambers), however with the latter group being more endogamic and favoring interactions with other ASUs. While our findings are limited to the specific platform analyzed, our approach may provide additional insights for the development of campaigns targeting parents on digital platforms.Postprint (published version

    Aspetti igienico-sanitari in ambito urbanistico: conflittualitĂ  nelle norme urbanistiche nazionali e locali in tema di sanitĂ  pubblica [Hygienic and sanitary aspects in urban planning: contradiction in national and local urban legislation regarding public health]

    Get PDF
    Nowadays, the majority of world population lives in urban areas and this portion is going to increase in the coming decades. The health impact of urban areas is well established and described in scientific literature. Italian health and hygiene legislation dealing with urban health is fragmented and not coordinated with the regulation about environment and city planning. The overlapping of legal competences between different authorities and the conflict of attribution between the Central State and Regional Governments deeply contributed to generate uncertainty. The authors here analyse the Italian regulatory framework and depict its lacks in terms of public health protection

    Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis

    Get PDF
    The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as \u201csoloists\u201d or by their \u201cdangerous liaisons\u201d, in favoring tumor progression by dissecting the cellular and molecular mechanisms involved
    • …
    corecore