36 research outputs found

    Reduced Expression of Sprouty1 Contributes to the Aberrant Proliferation and Impaired Apoptosis of Acute Myeloid Leukemia Cells

    Get PDF
    In most of the acute myeloid leukemia patients there is an aberrant tyrosine kinase activity. The prototype of Sprouty proteins was originally identified in Drosophila melanogaster as antagonists of Breathless, the mammalian ortholog of fibroblast growth factor receptor. Usually, SPRY family members are inhibitors of RAS signaling induced by tyrosine kinases receptors and they are implicated in negative feedback processes regulating several intracellular pathways. The present study aims to investigate the role of a member of the Sprouty family, Sprouty1, as a regulator of cell proliferation and growth in patients affected by acute myeloid leukemia. Sprouty1 mRNA and protein were both significantly down-regulated in acute myeloid leukemia cells compared to the normal counterpart, but they were restored when remission is achieved after chemotherapy. Ectopic expression of Sprouty1 revealed that it plays a key role in the proliferation and apoptotic defect that represent a landmark of the leukemic cells. Our study identified Sprouty1 as negative regulator involved in the aberrant signals of adult acute myeloid leukemia. Furthermore, we found a correlation between Sprouty1 and FoxO3a delocalization in acute myeloid leukemia (AML) patients at diagnosis, suggesting a multistep regulation of RAS signaling in human cancers

    The Wilms' tumor (WT1) gene expression correlates with the International Prognostic Scoring System (IPSS) score in patients with myelofibrosis and it is a marker of response to therapy

    Get PDF
    The Wilms tumor gene WT1 is a useful marker of clonal hematopoiesis and it has been shown to be a good marker of residual disease and it reflects the response to therapy. Although myelofibrosis is characterized by mutations of JAK2 and calreticulin (CALR), these mutations are not useful to monitor response to therapy. In this study we demonstrated that in patients affected by myelofibrosis WT1 correlates with the International Prognostic Scoring System (IPSS) score at diagnosis. Furthermore WT1 is a good marker of response to JAK2 inhibitors especially for patients without blasts and for patients who develop anemia or thrombocytopenia not for progression but as therapy related toxicity. Finally, WT1 transcript reduction can mirror a benefit of therapy on the disease burden. This study demonstrated that WT1 is a good marker for monitoring the response to therapy in patients affected by myelofibrosis

    Variable but consistent pattern of Meningioma 1 gene (MN1) expression in different genetic subsets of acute myelogenous leukaemia and its potential use as a marker for minimal residual disease detection

    Get PDF
    Meningioma 1 (MN1) gene overexpression has been reported in acute myeloid leukaemia (AML) patients and identified as a negative prognostic factor. In order to characterize patients presenting gene overexpression and to verify if MN1 transcript could be a useful marker for minimal residual disease detection, MN1 was quantified in 136 AML patients with different cytogenetic risk and in 50 normal controls. In 20 patients bearing a fusion gene transcript suitable for minimal residual disease quantitative assessment and in 8 patients with NPM1 mutation, we performed a simultaneous analysis of MN1 and the fusion-gene transcript or NPM1 mutation during follow-up. Sequential MN1 and WT1 analysis was also performed in 13 AML patients lacking other molecular markers. The data obtained show that normal cells consistently express low levels of MN1 transcript. In contrast, high levels of MN1 expression are present in 47% of patients with normal karyotype and in all cases with inv(16). MN1 levels during follow-up were found to follow the pattern of other molecular markers (fusion gene transcripts, NPM1 and WT1). Increased MN1 expression in the BM during follow up was always found to be predictive of an impending hematological relapse

    Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy

    Get PDF
    The Wilms' tumor gene WT1 is a reliable marker for minimal residual disease assessment in acute leukemia patients. The study was designed to demonstrate the potential use of WT1 to establish quality of remission in acute leukemia patients for early identification of patients at high risk of relapse. A prospective study based on a quantitative Real-Time PCR (TaqMan) assay in 562 peripheral blood samples collected from 82 acute leukemia patients at diagnosis and during follow-up was established. The evaluation of WT1 in peripheral blood samples after induction chemotherapy can distinguish the continuous complete remission patients from those who obtain only an "apparent" complete remission and who could relapse within a few months. WT1 helps identify patients at high risk of relapse soon after induction chemotherapy allowing post-induction therapy in high risk patients to be intensified

    A novel assay to detect calreticulin mutations in myeloproliferative neoplasms

    Get PDF
    The myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive (Ph+), chronic myeloid leukemia, or negative: polycythemia vera (PV) essential thrombocythemia (ET), and primary myelofibrosis (PMF). Most Ph negative cases have an activating JAK2 or MPL mutation. Recently, somatic mutations in the calreticulin gene (CALR) were detected in 56–88% of JAK2/MPL-negative patients affected by ET or PMF. The most frequent mutations in CARL gene are type-1 and 2. Currently, CALR mutations are evaluated by sanger sequencing. The evaluation of CARL mutations increases the diagnostic accuracy in patients without other molecular markers and could represent a new therapeutic target for molecular drugs. We developed a novel detection assay in order to identify type-1 and 2 CALR mutations by PNA directed PCR clamping. Seventy-five patients affected by myeloproliferative neoplasms and seven controls were examined by direct DNA sequencing and by PNA directed PCR clamping. The assay resulted to be more sensitive, specific and cheaper than sanger sequencing and it could be applied even in laboratory not equipped for more sophisticated analysis. Interestingly, we report here a case carrying both type 1 and type2 mutations in CALR gene

    Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum

    Get PDF
    In 2011 four ice cores were extracted from the summit of Alto dell'Ortles (3859 m), the highest glacier of South Tyrol in the Italian Alps. This drilling site is located only 37 km southwest from where the Tyrolean Iceman, similar to 5.3 kyrs old, was discovered emerging from the ablating ice field of Tisenjoch (3210 m, near the Italian-Austrian border) in 1991. The excellent preservation of this mummy suggested that the Tyrolean Iceman was continuously embedded in prehistoric ice and that additional ancient ice was likely preserved elsewhere in South Tyrol. Dating of the ice cores from Alto dell'Ortles based on Pb-210, tritium, beta activity and C-14 determinations, combined with an empirical model (COPRA), provides evidence for a chronologically ordered ice stratigraphy from the modern glacier surface down to the bottom ice layers with an age of similar to 7 kyrs, which confirms the hypothesis. Our results indicate that the drilling site has continuously been glaciated on frozen bedrock since similar to 7 kyrs BP. Absence of older ice on the highest glacier of South Tyrol is consistent with the removal of basal ice from bedrock during the Northern Hemisphere Climatic Optimum (6-9 kyrs BP), the warmest interval in the European Alps during the Holocene. Borehole inclinometric measurements of the current glacier flow combined with surface ground penetration radar (GPR) measurements indicate that, due to the sustained atmospheric warming since the 1980s, an acceleration of the glacier Alto dell'Ortles flow has just recently begun. Given the stratigraphic-chronological continuity of the Mt. Ortles cores over millennia, it can be argued that this behaviour has been unprecedented at this location since the Northern Hemisphere Climatic Optimum
    corecore