45 research outputs found

    Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis

    Get PDF
    BACKGROUND: Protein-protein interactions have traditionally been studied on a small scale, using classical biochemical methods to investigate the proteins of interest. More recently large-scale methods, such as two-hybrid screens, have been utilised to survey extensive portions of genomes. Current high-throughput approaches have a relatively high rate of errors, whereas in-depth biochemical studies are too expensive and time-consuming to be practical for extensive studies. As a result, there are gaps in our knowledge of many key biological networks, for which computational approaches are particularly suitable. RESULTS: We constructed networks, or 'interactomes', of putative protein-protein interactions in the rat proteome – the rat being an organism extensively used for cancer studies. This was achieved by integrating experimental protein-protein interaction data from many species and translating this data into the reference frame of the rat. The putative rat protein interactions were given confidence scores based on their homology to proteins that have been experimentally observed to interact. The confidence score was furthermore weighted according to the extent of the experimental evidence, giving a higher weight to more frequently observed interactions. The scoring function was subsequently validated and networks constructed around key proteins, identified as being highly up- or down-regulated in rat cell lines of high metastatic potential. Using clustering methods on the networks, we have identified key protein communities involved in cancer metastasis. CONCLUSION: The protein network generation and subsequent network analysis used here, were shown to be useful for highlighting key proteins involved in metastasis. This approach, in conjunction with microarray expression data, can be extended to other species, thereby suggesting possible pathways around proteins of interest

    EKV mutant connexin 31 associated cell death is mediated by ER stress

    Get PDF
    The epidermis expresses a number of connexin (Cx) proteins that are implicated in gap junction-mediated cell communication. Distinct dominantly inherited mutations in Cx31 cause the skin disease erythrokeratoderma variabilis (EKV) and hearing loss with or without neuropathy. Functional studies reveal tissue-specific effects of these Cx31 disease-associated mutations. The Cx31 mutants (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 are associated with EKV and the mutant (66delD)Cx31 with peripheral neuropathy and hearing loss, however the mechanisms of pathogenesis remain to be elucidated. Expression of (R42P)Cx31, (C86S)Cx31 and (G12D)Cx31 in vitro, but not (WT)Cx31 or (66delD)Cx31, cause elevated levels of cell-type specific cell death. Previous studies suggest that Cx-associated cell death may be related to abnormal ‘leaky’ hemichannels but we produced direct evidence against that being the major mechanism. Additionally, our immunocytochemistry showed upregulation of components of the unfolded protein response (UPR) in cells expressing the EKV-associated Cx31 mutants but not (WT)Cx31 or (66delD)Cx31. We conclude that the endoplasmic reticulum (ER) stress leading to the UPR is the main mechanism of mutant Cx31-associated cell death. These results indicate that, in vivo, ER stress may lead to abnormal keratinocyte differentiation and hyperproliferation in EKV patient skin

    A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression

    Get PDF
    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 µm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity

    Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell

    Get PDF
    T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through α-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time

    Burn Injury Reduces Neutrophil Directional Migration Speed in Microfluidic Devices

    Get PDF
    Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72–120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions

    The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport

    No full text
    In several Drosophila cell types, mRNA transport depends on microtubules, the molecular motor dynein and trans-acting factors including Egalitarian and Bicaudal-D. However, the molecular basis of transcript recognition by the localization machinery is poorly understood. Here, we characterize the features of hairy pair-rule RNA transcripts that mediate their apical localization, using in vivo injection of fluorescently labelled mRNAs into syncytial blastoderm embryos. We show that a 121-nucleotide element within the 3′-untranslated region is necessary and sufficient to mediate apical transport. The signal comprises two essential stem–loop structures, in which double-stranded stems are crucial for localization. Base-pair identities within the stems are not essential, but can contribute to the efficiency of localization, suggesting that specificity is mediated by higher-order structure. Using time-lapse microscopy, we measure the kinetics of localization and show that impaired localization of mutant signals is due to delayed formation of active motor complexes and, unexpectedly, to slower movement. These findings, and those from co-injecting wild-type and mutant RNAs, suggest that the efficiency of molecular motors is modulated by the character of their cargoes
    corecore