14 research outputs found

    Secure referee selection for fair and responsive peer-to-peer gaming

    Get PDF
    Peer-to-Peer (P2P) architectures for Massively Multiplayer Online Games (MMOG) provide better scalability than Client/Server (C/S); however, they increase the possibility of cheating. Recently proposed P2P protocols use trusted referees that simulate/validate the game to provide security equivalent to C/S. When selecting referees from untrusted peers, selecting non-colluding referees becomes critical. Further, referees should be selected such that the range and length of delays to players is minimised (maximising game fairness and responsiveness). In this paper we formally define the referee selection problem and propose two secure referee selection algorithms, SRS-1 and SRS-2, to solve it. Both algorithms ensure the probability of corrupt referees controlling a zone/region is below a predefined limit, while attempting to maximise responsiveness and fairness. The trade-off between responsiveness and fairness is adjustable for both algorithms. Simulations of three different scenarios show the effectiveness of our algorithms

    Simulation of electrophoretic stretching of DNA in a microcontraction using an obstacle array for conformational preconditioning

    No full text
    Recently our group has reported experiments using an obstacle array to precondition the conformations of DNA molecules to facilitate their stretch in a microcontraction. Based upon previous successes simulating electrophoretic stretching in microcontractions without obstacles, we use our simulation model to study the deformation of DNA chains in a microcontraction preceded by an array of cylindrical obstacles. We compare our data to the experimental results and find good qualitative, and even quantitative, agreement concerning the behavior of the chains in the array; however, the simulations overpredict the mean stretch of the chains as they leave the contraction. We examine the amount of stretch gained between leaving the array and reaching the end of the contraction and speculate that the differences seen are caused by nonlinear electrokinetic effects that become important in the contraction due to a combination of field gradients and high field strengths.Singapore-MIT AllianceNational Institute of Biomedical Imaging and Bioengineering (U.S.) (Award No. T32EB006348
    corecore