203 research outputs found

    Can Giraffes Become Birds? An Evaluation of Image-to-image Translation for Data Generation

    Get PDF
    There is an increasing interest in image-to-image translation with applications ranging from generating maps from satellite images to creating entire clothes' images from only contours. In the present work, we investigate image-to-image translation using Generative Adversarial Networks (GANs) for generating new data, taking as a case study the morphing of giraffes images into bird images. Morphing a giraffe into a bird is a challenging task, as they have different scales, textures, and morphology. An unsupervised cross-domain translator entitled InstaGAN was trained on giraffes and birds, along with their respective masks, to learn translation between both domains. A dataset of synthetic bird images was generated using translation from originally giraffe images while preserving the original spatial arrangement and background. It is important to stress that the generated birds do not exist, being only the result of a latent representation learned by InstaGAN. Two subsets of common literature datasets were used for training the GAN and generating the translated images: COCO and Caltech-UCSD Birds 200-2011. To evaluate the realness and quality of the generated images and masks, qualitative and quantitative analyses were made. For the quantitative analysis, a pre-trained Mask R-CNN was used for the detection and segmentation of birds on Pascal VOC, Caltech-UCSD Birds 200-2011, and our new dataset entitled FakeSet. The generated dataset achieved detection and segmentation results close to the real datasets, suggesting that the generated images are realistic enough to be detected and segmented by a state-of-the-art deep neural network.Comment: Accepted for presentation at the Computer on the Beach (COTB'20) 202

    IDA: Improved Data Augmentation Applied to Salient Object Detection

    Full text link
    In this paper, we present an Improved Data Augmentation (IDA) technique focused on Salient Object Detection (SOD). Standard data augmentation techniques proposed in the literature, such as image cropping, rotation, flipping, and resizing, only generate variations of the existing examples, providing a limited generalization. Our method combines image inpainting, affine transformations, and the linear combination of different generated background images with salient objects extracted from labeled data. Our proposed technique enables more precise control of the object's position and size while preserving background information. The background choice is based on an inter-image optimization, while object size follows a uniform random distribution within a specified interval, and the object position is intra-image optimal. We show that our method improves the segmentation quality when used for training state-of-the-art neural networks on several famous datasets of the SOD field. Combining our method with others surpasses traditional techniques such as horizontal-flip in 0.52% for F-measure and 1.19% for Precision. We also provide an evaluation in 7 different SOD datasets, with 9 distinct evaluation metrics and an average ranking of the evaluated methods.Comment: Accepted for presentation at SIBGRAPI 2020 - 33rd Conference on Graphics, Patterns and Image

    Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication

    Get PDF
    Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future. © 2022 The Author(s

    Phase-resolved spectroscopic analysis of the eclipsing black hole X-ray binary M33 X-7: System properties, accretion, and evolution

    Get PDF
    M33 X-7 is the only known eclipsing black hole high mass X-ray binary. The system is reported to contain a very massive O supergiant donor and a massive black hole in a short orbit. The high X-ray luminosity and its location in the metal-poor galaxy M33 make it a unique laboratory for studying the winds of metal-poor donor stars with black hole companions and it helps us to understand the potential progenitors of black hole mergers. Using phase-resolved simultaneous HST- and XMM-Newton-observations, we traced the interaction of the stellar wind with the black hole. We observed a strong Hatchett-McCray effect in M33 X-7 for the full range of wind velocities. Our comprehensive spectroscopic investigation of the donor star (X-ray+UV+optical) yields new stellar and wind parameters for the system that differ significantly from previous estimates. In particular, the masses of the components are considerably reduced to ≈38 M⊙ for the O-star donor and ≈11.4 M⊙ for the black hole. The O giant is overfilling its Roche lobe and shows surface He enrichment. The donor shows a densely clumped wind with a mass-loss rate that matches theoretical predictions. An extended ionization zone is even present during the eclipse due to scattered X-ray photons. The X-ray ionization zone extends close to the photosphere of the donor during inferior conjunction. We investigated the wind-driving contributions from different ions and the changes in the ionization structure due to X-ray illumination. Toward the black hole, the wind is strongly quenched due to strong X-ray illumination. For this system, the standard wind-fed accretion scenario alone cannot explain the observed X-ray luminosity, pointing toward an additional mass overflow, which is in line with our acceleration calculations. The X-ray photoionization creates an He II emission region around the system emitting ∼1047 ph s−1. We computed binary evolutionary tracks for the system using MESA. Currently, the system is transitioning toward an unstable mass transfer phase, possibly resulting in a common envelope of the black hole and the O-star donor. Since the mass ratio is q ≳ 3.3 and the period is short, the system is unlikely to survive the common envelope, but will rather merge.VR acknowledges support by the Deutsches Zentrum fsür Luft- und Raumfahrt (DLR) under grant 50 OR 1912. VR and AACS acknowledge support by the Deutsche Forschungsgemeinschaft (DFG – German Research Foundation) in the form of an Emmy Noether Research Group (grant number SA4064/1-1, PI Sander). DP acknowledges financial support by the Deutsches Zentrum für Luft und Raumfahrt (DLR) grant FKZ 50 OR 2005

    Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries

    Get PDF
    Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e., >5 mA/cm2). Here, we apply a MHz-pulse-current protocol to circumvent low-current cell failure for developing all-solid-state Li metal cells operating up to a current density of 6.5 mA/cm2. Additionally, we propose a mechanistic analysis of the experimental results to prove that lithium activity near solid-state electrolyte defect tips is critical for reliable cell cycling. It is demonstrated that when lithium is geometrically constrained and local current plating rates exceed the exchange current density, the electrolyte region close to the defect releases the accumulated elastic energy favouring fracturing. As the build-up of this critical activity requires a certain period, applying current pulses of shorter duration can thus improve the cycling performance of all-solid-solid-state lithium batteries.publishedVersio

    First detection and frequent occurrence of Equine Hepacivirus in horses on the African continent

    Get PDF
    Since the discovery of equine hepacivirus (EqHV) in 2011, the virus has been detected in horse populations from more than twelve countries across five continents. EqHV seroprevalence has been reported to be as high as 61.8% and EqHV ribonucleic acid (RNA) prevalence to range between 0.9% and 34.1%. Molecular and serological indications of EqHV infection have never been reported in equids on the African continent. Therefore, investigation of EqHV prevalence in South African horses and subsequent viral genetic characterization contribute to a better understanding of the global epidemiology of this virus. In a cross-sectional study, serum samples from 454 Thoroughbred foals (aged 58–183 days) were analysed for anti-EqHV non-structural protein 3 (NS3)-specific antibodies (abs) with a luciferase immunoprecipitation system (LIPS) and for EqHV RNA by quantitative real-time polymerase chain reaction (qRT-PCR). Farms of origin (n = 26) were situated in South Africa’s Western Cape Province. The associations between EqHV infection state and farm of origin, foal gender and foal age were subsequently described. Furthermore, nested PCRs were performed on parts of the 5′UTR, NS3 and NS5B genes of 17 samples. Samples were sequenced and phylogenetic analyses were conducted. The population’s seroprevalence was 83.70% and RNA was detected in 7.93% of samples. Increasing foal age was associated with decreasing ab prevalence and increasing prevalence of EqHV RNA. Sequences from South African EqHV strains did not show in-depth clustering with published sequences of EqHV isolates from particular continents. In conclusion, EqHV is present in the South African Thoroughbred population and appears more prevalent than reported in other horse populations worldwide.M.B. was supported by the Deutscher Akademischer Austauschdienst (DAAD). B.T. was supported by the Hannover Medical School. E.S. was supported by the Helmholtz Centre for Infection Research.http://www.elsevier.com/locate/vetmic2019-09-01hj2018Companion Animal Clinical StudiesEquine Research Centr
    corecore