6 research outputs found

    Brain mapping in cognitive disorders: a multidisciplinary approach to learning the tools and applications of functional neuroimaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With rapid advances in functional imaging methods, human studies that feature functional neuroimaging techniques are increasing exponentially and have opened a vast arena of new possibilities for understanding brain function and improving the care of patients with cognitive disorders in the clinical setting. There is a growing need for medical centers to offer clinically relevant functional neuroimaging courses that emphasize the multifaceted and multidisciplinary nature of this field. In this paper, we describe the implementation of a functional neuroimaging course focusing on cognitive disorders that might serve as a model for other medical centers. We identify key components of an active learning course design that impact student learning gains in methods and issues pertaining to functional neuroimaging that deserve consideration when optimizing the medical neuroimaging curriculum.</p> <p>Methods</p> <p>Learning gains associated with the course were assessed using polychoric correlation analysis of responses to the SALG (Student Assessment of Learning Gains) instrument.</p> <p>Results</p> <p>Student gains in the functional neuroimaging of cognition as assessed by the SALG instrument were strongly associated with several aspects of the course design.</p> <p>Conclusion</p> <p>Our implementation of a multidisciplinary and active learning functional neuroimaging course produced positive learning outcomes. Inquiry-based learning activities and an online learning environment contributed positively to reported gains. This functional neuroimaging course design may serve as a useful model for other medical centers.</p

    Miniature Beryllium Split-Hopkinson Pressure Bars for Extending the Range of Achievable Strain-Rates

    No full text
    Conventional Split Hopkinson Pressure Bars (SHPB) or &ldquo;Kolsky&rdquo; bars are often used for determining the high-rate compressive yield and failure strength of materials. However, for experiments generating very high strain-rates (&gt;103/s) miniaturization of the setup is often required for minimizing the effects of elastic wave dispersion in order to enable the inference of decreasingly short loading events from the data. Miniature aluminum and steel bars are often sufficient for meeting these requirements. However, for high enough strain-rates, miniaturization of steel or aluminum Kolsky bars may require prohibitively small diameter bars and test specimens that could become inappropriate for inferring representative properties of materials with large grain size relative to the test specimen size. The use of a beryllium Kolsky bar setup is expected to enable high rates to be accessible with larger diameter bars/specimen combinations due to the inherent physical properties of beryllium, which are expected to minimize the effects of elastic wave dispersion. For this reason, a series of beryllium Kolsky bars have been developed, and, in this paper, the dispersion characteristics of these bars are measured and compare the data with those of similarly sized 7075-T6 aluminum and C350 maraging steel. The results, which agree well with the theory, show no appreciable frequency dependence of the elastic wavespeed in the data from the beryllium bars, demonstrating its advantage over aluminum and steel in application to Kolsky bars
    corecore