68 research outputs found

    Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, \u3ci\u3eApis mellifera\u3c/i\u3e (L.)

    Get PDF
    Background: The loss of honey bee colonies is a nationally recognized problem that demands attention from both the scientific community and the beekeeping industry. One outstanding threat is the unintended exposure of these pollinators to agricultural pesticides. Anthranilic diamides, such as chlorantraniliprole, are registered for use in stone and pome fruits, vegetables, turf, and grains. There are few publicly available studies that provide an analysis of chlorantraniliprole effects on the survivorship and locomotion activity of beneficial, pollinating insects such as honey bees. The data gathered in this study provide the acute toxicity, 30-day survivorship, and locomotor activity of honey bees exposed to technical-grade chlorantraniliprole and three formulated products with chlorantraniliprole as the active ingredient. Results: Neither the technical-grade nor the formulated products of chlorantraniliprole were acutely toxic to honey bees following 4 or 72h treatments at the tested concentrations. A 4 h treatment of technical-grade and formulated chlorantraniliprole did not significantly affect the 30-day survivorship, although significantly higher mortality was observed after 30 days for bees receiving a 72 h treatment of technical-grade chlorantraniliprole and two formulated products. The locomotion activity, or total walking distance, of bees receiving a 4 h treatment of one chlorantraniliprole formulation was significantly reduced, with these individuals recovering their normal locomotion activity at 48 h post exposure. Conversely, there was observed lethargic behavior and significantly reduced walking distances for bees provided with a 72 h treatment of technical-grade chlorantraniliprole and each formulated product. Conclusion: This study provides evidence for the effect of long-term exposure of chlorantraniliprole on the survivorship and locomotor activity of honey bees. Bees receiving a more field-relevant short-term exposure survived and moved similarly to untreated bees, reiterating the relative safety of chlorantraniliprole exposure to adult honey bees at recommended label concentrations

    ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees

    Get PDF
    Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees

    ATP-sensitive inwardly rectifying potassium channel modulators alter cardiac function in honey bees

    Get PDF
    ATP-sensitive inwardly rectifying potassium (KATP) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that KATP channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate. Heart rate decreased in a concentration-dependent manner, relative to controls, with the application of the KATP channel antagonist tolbutamide and KATP channel blockers barium and magnesium, whereas heart rate increased with the application of a low concentration of the KATP channel agonist pinacidil, but decreased at higher concentrations. Furthermore, pretreatment with barium magnified the effects of tolbutamide treatment and eliminated the effects of pinacidil treatment at select concentrations. The data presented here confirm a role for KATP channels in the regulation of honey bee dorsal vessel contractions and provide insight into the underlying physiology that governs the regulation of bee cardiac function

    Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies

    Get PDF
    Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or ‘druggable’ target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium ( KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field

    Toxicological analysis of stilbenes against the fall armyworm, \u3ci\u3eSpodoptera frugiperda\u3c/i\u3e

    Get PDF
    The fall armyworm (FAW), Spodoptera frugiperda, is a global pest of multiple economically important row crops and the development of resistance to commercially available insecticidal classes has inhibited FAW control. Thus, there is a need to identify chemical scaffolds that can provide inspiration for the development of novel insecticides for FAW management. This study aimed to assess the sensitivity of central neurons and susceptibility of FAW to chloride channel modulators to establish a platform for repurposing existing insecticides or designing new chemicals capable of controlling FAW. Potency of select chloride channel modulators were initially studied against FAW central neuron firing rate and rank order of potency was determined to be fipronil \u3e lindane \u3e Z-stilbene \u3e DIDS \u3e GABA \u3e E-stilbene. Toxicity bioassays identified fipronil and lindane as the two most toxic modulators studied with topical LD50\u27s of 41 and 75 ng/mg of caterpillar, respectively. Interestingly, Z-stilbene was toxic at 300 ng/mg of caterpillar, but no toxicity was observed with DIDS or E-stilbene. The significant shift in potency between stilbene isomers indicates structure-activity relationships between stilbene chemistry and the binding site in FAW may exist. The data presented in this study defines the potency of select chloride channel modulators to FAW neural activity and survivorship to establish a platform for development of novel chemical agents to control FAW populations. Although stilbenes may hold promise for insecticide development, the low toxicity of the scaffolds tested in this study dampen enthusiasm for their development into FAW specific insecticides

    Age- and sex-related ABC transporter expression in pyrethroid-susceptible and – resistant \u3ci\u3eAedes aegypti\u3c/i\u3e

    Get PDF
    Resistance mechanisms to synthetic insecticides often include point mutations and increased expression of genes encoding detoxification enzymes. Since pyrethroids are the main adulticides used against Aedes aegypti, which vectors pathogens such as Zika virus, understanding resistance to this insecticide class is of significant relevance. We focused on adenosine triphosphate (ATP)-binding cassette (ABC) transporters in the pyrethroid-resistant Puerto Rico (PR) strain of Ae. aegypti. We investigated the expression patterns of six ABC transporters previously characterized as differentially expressed in insecticide-challenged mosquitoes, or increased mRNA expression in pyrethroid-resistant Ae. aegypti, by comparing PR to the Rockefeller (Rock) susceptible strain. No constitutive differential expression between strains was detected, but expression differences for these genes was influenced by sex and age, suggesting that their role is independent from resistance in PR. Instead, ABC transporters may be induced after insecticide exposure. Challenging mosquitoes with deltamethrin, with or without ABC transporter modulators, showed that Rock and PR responded differently, but a contribution of ABC transporters to deltamethrin toxicity is suspected. Moreover, the effect of dexamethasone, which enhanced the inhibition of nerve firing by deltamethrin, was observed using a Drosophila central nervous system preparation, showing synergy of these two compounds through the potential inhibition of ABC transporters

    Membrane Proteins Mediating Reception and Transduction in Chemosensory Neurons in Mosquitoes

    Get PDF
    Mosquitoes use chemical cues to modulate important behaviors such as feeding, mating, and egg laying. The primary chemosensory organs comprising the paired antennae, maxillary palps and labial palps are adorned with porous sensilla that house primary sensory neurons. Dendrites of these neurons provide an interface between the chemical environment and higher order neuronal processing. Diverse proteins located on outer membranes interact with chemicals, ions, and soluble proteins outside the cell and within the lumen of sensilla. Here, we review the repertoire of chemosensory receptors and other membrane proteins involved in transduction and discuss the outlook for their functional characterization. We also provide a brief overview of select ion channels, their role in mammalian taste, and potential involvement in mosquito taste. These chemosensory proteins represent targets for the disruption of harmful biting behavior and disease transmission by mosquito vectors

    ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees

    Get PDF
    Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees
    • …
    corecore