7,118 research outputs found

    Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2

    Get PDF
    The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea

    A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays

    Get PDF
    Copyright @ 2012 Taylor & FrancisIn this article, the distributed consensus problem is considered for discrete-time delayed networks of dynamic agents with fixed topologies, where the networks under investigation are directed and the time-delays involved are distributed time delays including a single or multiple time delay(s) as special cases. By using the invariance principle of delay difference systems, a new unified framework is established to deal with the consensus for the discrete-time delayed multi-agent system. It is shown that the addressed discrete-time network with arbitrary distributed time delays reaches consensus provided that it is strongly connected. A numerical example is presented to illustrate the proposed methods.This work was supported in part by City University of Hong Kong under Grant 7008114, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Glycosaminoglycans in human and bovine serum: detection of twenty-four heparan sulfate and chondroitin sulfate motifs including a novel sialic acid-modified chondroitin sulfate linkage hexasaccharide

    Get PDF
    Heterogeneous heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) polysaccharides are important components of blood circulation. Changes in GAG quantity and structure in blood have been indicated in cancers and other human diseases. However, GAG quantities and structures have not been fully characterized due to lack of robust and sensitive analytical tools. To develop such tools, we isolated GAGs from serum and plasma. We employed liquid chromatography (LC) for GAG quantification and LC/mass spectrometry (MS) for GAG structural analysis. Twenty-four heparan and chondroitin sulfate motifs were identified, including linkage hexasaccharides, repeating disaccharide compositions, reducing, and non-reducing end mono-, di-, tri-, and tetrasaccharide structures. Disaccharides were detectable at picomolar level without radiolabeling or derivitization, so only a few ml of human and fetal bovine serum was required for this study. The detection of different reducing end structures distinct from GAG linkage hexasaccharides revealed that free GAG chains generated by GAG degradation enzymes co-existed with proteoglycans in serum. In addition, a novel sialic acid-modified linkage hexasaccharide was found conjugated to bikunin, the most abundant serum proteoglycan

    Energetics of hydrogen impurities in aluminum and their effect on mechanical properties

    Full text link
    The effects of hydrogen impurities in the bulk and on the surface of aluminum are theoretically investigated. Within the framework of density functional theory, we have obtained the dependence on H concentration of the stacking fault energy, the cleavage energy, the Al/H surface energy and the Al/H/Al interface formation energy. The results indicate a strong dependence of the slip energy barrier in the [2ˉ11][\bar 211] direction the cleavage energy in the [111] direction and the Al/H/Al interface formation energy, on H concentration and on tension. The dependence of the Al/H surface energy on H coverage is less pronounced, while the optimal H coverage is ≤0.25\leq 0.25 monolayer. The calculated activation energy for diffusion between high symmetry sites in the bulk and on the surface is practically the same, 0.167 eV. From these results, we draw conclusions about the possible effect of H impurities on mechanical properties, and in particular on their role in embrittlement of Al.Comment: 9 pages, 5 figure

    A Thermodynamic and Kinetic Characterization of the Solvent Dependence of the Saddle-Crown Equilibrium of Cyclotriveratrylene (CTV) Oxime

    Get PDF
    The equilibration of the saddle conformer of cyclotriveratrylene (CTV) oxime to the corresponding crown conformer was followed by (1)H NMR in five separate solvents, and kinetic and thermodynamic parameters were determined from the NMR data. The oxime saddle conformers of 3 are favored in CDCl(3) (K(eq) = [saddle]/[crown] = 1.4), whereas the CTV oxime crown conformer 3a is favored in three more polar solvents studied (DMSO-d(6), acetonitrile-d(3), acetone-d(6)). Surprisingly, the CTV oxime crown conformer is also slightly favored in the nonpolar solvent 1,4-dioxane-d(8). These behaviors are discussed in terms of hydrogen bonding, entropy, and possible host-guest considerations. An X-ray crystal structure was obtained for CTV monoketone, and structures of the different conformers of CTV, CTV ketone, and CTV oxime were calculated with semiempirical AM1 methods for direct comparison of their ground-state energies

    Enhanced Second Harmonic Generation in Femtosecond Laser Inscribed Double-Cladding Waveguide of Nd:GdCOB Crystal

    Get PDF
    We report on the fabrication of double-cladding waveguides in Nd:GdCOB crystals by using femtosecond laser inscription with scanning speed of 0.5 mm/s. This prototype consists of two concentric tubular structures with nearly circular cross sections with different diameters. The fabricated cladding waveguides possess relatively low propagation losses of less than 0.65 dB/cm. The micro photoluminescence and second harmonic confocal images of the fabricated waveguides, which were performed by using a confocal microscope, have revealed that neither the fluorescence nor the nonlinear properties of the constituent crystals have been deteriorated during femtosecond lasermicromachining procedure. Under the pulsed laser pumping at fundamental wavelength of 1064 nm, the guided wave second harmonic generation (SHG) at 532 nm has been realized from the single and double cladding waveguides. Compared to the single-claddings (2.3 or 4.7%, depending on the diverse cladding diameters), the double cladding architecture has been found to be with enhanced SHG conversion efficiency (∼5.1%).The work was supported by the National Natural Science Foundation of China under Grants 11274203 and 11111130200, the Spanish Ministerio de Ciencia e Innovación (MICINN) through Consolider Program SAUUL CSD2007-00013 and Project FIS2009-09522, and the Centro de Láseres Pulsados (CLPU)
    • …
    corecore