2,211 research outputs found

    Mapping out the time-evolution of exoplanet processes

    Get PDF
    There are many competing theories and models describing the formation, migration and evolution of exoplanet systems. As both the precision with which we can characterize exoplanets and their host stars, and the number of systems for which we can make such a characterization increase, we begin to see pathways forward for validating these theories. In this white paper we identify predicted, observable correlations that are accessible in the near future, particularly trends in exoplanet populations, radii, orbits and atmospheres with host star age. By compiling a statistically significant sample of well-characterized exoplanets with precisely measured ages, we should be able to begin identifying the dominant processes governing the time-evolution of exoplanet systems.Comment: Astro2020 white pape

    The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis

    Get PDF
    Kepler-296 is a binary star system with two M-dwarf components separated by 0.2 arcsec. Five transiting planets have been confirmed to be associated with the Kepler-296 system; given the evidence to date, however, the planets could in principle orbit either star. This ambiguity has made it difficult to constrain both the orbital and physical properties of the planets. Using both statistical and analytical arguments, this paper shows that all five planets are highly likely to orbit the primary star in this system. We performed a Markov-Chain Monte Carlo simulation using a five transiting planet model, leaving the stellar density and dilution with uniform priors. Using importance sampling, we compared the model probabilities under the priors of the planets orbiting either the brighter or the fainter component of the binary. A model where the planets orbit the brighter component, Kepler-296A, is strongly preferred by the data. Combined with our assertion that all five planets orbit the same star, the two outer planets in the system, Kepler-296 Ae and Kepler-296 Af, have radii of 1.53 +/- 0.26 and 1.80 +/- 0.31 R_earth, respectively, and receive incident stellar fluxes of 1.40 +/- 0.23 and 0.62 +/- 0.10 times the incident flux the Earth receives from the Sun. This level of irradiation places both planets within or close to the circumstellar habitable zone of their parent star.Comment: Accepted for publication in Ap

    Asteroseismology of 16000 Kepler Red Giants: Global Oscillation Parameters, Masses, and Radii

    Full text link
    The Kepler mission has provided exquisite data to perform an ensemble asteroseismic analysis on evolved stars. In this work we systematically characterize solar-like oscillations and granulation for 16,094 oscillating red giants, using end-of-mission long-cadence data. We produced a homogeneous catalog of the frequency of maximum power (typical uncertainty σνmax\sigma_{\nu_{\rm max}}=1.6\%), the mean large frequency separation (σΔν\sigma_{\Delta\nu}=0.6\%), oscillation amplitude (σA\sigma_{\rm A}=4.7\%), granulation power (σgran\sigma_{\rm gran}=8.6\%), power excess width (σwidth\sigma_{\rm width}=8.8\%), seismically-derived stellar mass (σM\sigma_{\rm M}=7.8\%), radius (σR\sigma_{\rm R}=2.9\%), and thus surface gravity (σlogg\sigma_{\log g}=0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width of power excess, which is mainly due to the mass difference. The distribution of oscillation amplitudes shows an extremely sharp upper edge at fixed νmax\nu_{\rm max}, which might hold clues to understand the excitation and damping mechanisms of the oscillation modes. We find both oscillation amplitude and granulation power depend on metallicity, causing a spread of 15\% in oscillation amplitudes and a spread of 25\% in granulation power from [Fe/H]=-0.7 to 0.5 dex. Our asteroseismic stellar properties can be used as reliable distance indicators and age proxies for mapping and dating galactic stellar populations observed by Kepler. They will also provide an excellent opportunity to test asteroseismology using Gaia parallaxes, and lift degeneracies in deriving atmospheric parameters in large spectroscopic surveys such as APOGEE and LAMOST.Comment: Accepted for publication in ApJS. Both table 1 and 2 are available for download as ancillary file

    Automated extraction of oscillation parameters for Kepler observations of solar-type stars

    Full text link
    The recent launch of the Kepler space telescope brings the opportunity to study oscillations systematically in large numbers of solar-like stars. In the framework of the asteroFLAG project, we have developed an automated pipeline to estimate global oscillation parameters, such as the frequency of maximum power (nu_max) and the large frequency spacing (Delta_nu), for a large number of time series. We present an effective method based on the autocorrelation function to find excess power and use a scaling relation to estimate granulation timescales as initial conditions for background modelling. We derive reliable uncertainties for nu_max and Delta_nu through extensive simulations. We have tested the pipeline on about 2000 simulated Kepler stars with magnitudes of V~7-12 and were able to correctly determine nu_max and Delta_nu for about half of the sample. For about 20%, the returned large frequency spacing is accurate enough to determine stellar radii to a 1% precision. We conclude that the methods presented here are a promising approach to process the large amount of data expected from Kepler.Comment: 14 pages, 9 figures, accepted for publication in Communications in Asteroseismolog

    The Physical Parameters of the Retired A Star HD185351

    Full text link
    We report here an analysis of the physical stellar parameters of the giant star HD185351 using Kepler short-cadence photometry, optical and near infrared interferometry from CHARA, and high-resolution spectroscopy. Asteroseismic oscillations detected in the Kepler short-cadence photometry combined with an effective temperature calculated from the interferometric angular diameter and bolometric flux yield a mean density, rho_star = 0.0130 +- 0.0003 rho_sun and surface gravity, logg = 3.280 +- 0.011. Combining the gravity and density we find Rstar = 5.35 +- 0.20 Rsun and Mstar = 1.99 +- 0.23 Msun. The trigonometric parallax and CHARA angular diameter give a radius Rstar = 4.97 +- 0.07 Rsun. This smaller radius,when combined with the mean stellar density, corresponds to a stellar mass Mstar = 1.60 +- 0.08 Msun, which is smaller than the asteroseismic mass by 1.6-sigma. We find that a larger mass is supported by the observation of mixed modes in our high-precision photometry, the spacing of which is consistent only for Mstar =~ 1.8 Msun. Our various and independent mass measurements can be compared to the mass measured from interpolating the spectroscopic parameters onto stellar evolution models, which yields a model-based mass M_star = 1.87 +- 0.07 Msun. This mass agrees well with the asteroseismic value,but is 2.6-sigma higher than the mass from the combination of asteroseismology and interferometry. The discrepancy motivates future studies with a larger sample of giant stars. However, all of our mass measurements are consistent with HD185351 having a mass in excess of 1.5 Msun.Comment: ApJ accepte

    Ballot secrecy concerns and voter mobilization: new experimental evidence about message source, context, and the duration of mobilization effects

    Get PDF
    Recent research finds that doubts about the integrity of the secret ballot as an institution persist among the American public. We build on this finding by providing novel field experimental evidence about how information about ballot secrecy protections can increase turnout among registered voters who had not previously voted. First, we show that a private group’s mailing designed to address secrecy concerns modestly increased turnout in the highly contested 2012 Wisconsin gubernatorial recall election. Second, we exploit this and an earlier field experiment conducted in Connecticut during the 2010 congressional midterm election season to identify the persistent effects of such messages from both governmental and non-governmental sources. Together, these results provide new evidence about how message source and campaign context affect efforts to mobilize previous non-voters by addressing secrecy concerns, as well as show that attempting to address these beliefs increases long term participation

    Self-interest, beliefs, and policy opinions: understanding how economic beliefs affect immigration policy preferences

    Get PDF
    Research on how economic factors affect attitudes toward immigration often focuses on labor market effects, concluding that, because workers’ skill levels do not predict opposition to low- versus highly skilled immigration, economic self-interest does not shape policy attitudes. We conduct a new survey to measure beliefs about a range of economic, political, and cultural consequences of immigration. When economic self-interest is broadened to include concerns about the fiscal burdens created by immigration, beliefs about these economic effects strongly correlate with immigration attitudes and explain a significant share of the difference in support for highly versus low-skilled immigration. Although cultural factors are important, our results suggest that previous work underestimates the importance of economic self-interest as a source of immigration policy preferences and attitudes more generally
    corecore