3,798 research outputs found

    Learning in the Repeated Secretary Problem

    Full text link
    In the classical secretary problem, one attempts to find the maximum of an unknown and unlearnable distribution through sequential search. In many real-world searches, however, distributions are not entirely unknown and can be learned through experience. To investigate learning in such a repeated secretary problem we conduct a large-scale behavioral experiment in which people search repeatedly from fixed distributions. In contrast to prior investigations that find no evidence for learning in the classical scenario, in the repeated setting we observe substantial learning resulting in near-optimal stopping behavior. We conduct a Bayesian comparison of multiple behavioral models which shows that participants' behavior is best described by a class of threshold-based models that contains the theoretically optimal strategy. Fitting such a threshold-based model to data reveals players' estimated thresholds to be surprisingly close to the optimal thresholds after only a small number of games

    Pathophysiology of heart failure and frailty: a common inflammatory origin?

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136680/1/acel12581_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136680/2/acel12581.pd

    Aged B cells alter immune regulation of allografts in mice

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134428/1/eji3757-sup-0001-PRC.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134428/2/eji3757_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134428/3/eji3757.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134428/4/eji3757-sup-0002-figure1-3.pd

    From Lyapunov modes to the exponents for hard disk systems

    Full text link
    We demonstrate the preservation of the Lyapunov modes by the underlying tangent space dynamics of hard disks. This result is exact for the zero modes and correct to order ϵ\epsilon for the transverse and LP modes where ϵ\epsilon is linear in the mode number. For sufficiently large mode numbers the dynamics no longer preserves the mode structure. We propose a Gram-Schmidt procedure based on orthogonality with respect to the centre space that determines the values of the Lyapunov exponents for the modes. This assumes a detailed knowledge of the modes, but from that predicts the values of the exponents from the modes. Thus the modes and the exponents contain the same information

    Technetium pyrophosphate myocardial scanning in acute myocardial infarction

    Get PDF
    Technetium 99m pyrophosphate (99mTCPyP) accumulates in recently infarcted myocardium and can be detected by external imaging techniques. This study was performed to evaluate the ability of this isotope to identify the presence of acute myocardial infarction. In 82 patients admitted to a coronary care unit with chest pain of varying etiology, scan was positive in all 13 patients with acute transmural myocardial infarction and in 23 of 27 patients with nontransmural myocardial infarction. The scan was negative in 37 of 42 patients without evidence of recent infarction. Four of the remaining five patients in this group had unstable angina pectoris. The authors believe TCPyP myocardial scanning is an easy, noninvasive, and highly reliable test for detection of acute myocardial infarction when performed within seven days of the onset of chest pain. The method has particular significance when standard diagnostic aids are difficult to interpret. It was also extremely helpful in substantiating the diagnosis of nontransmural infarction

    Real-Time Predictions of Reservoir Size and Rebound Time during Antiretroviral Therapy Interruption Trials for HIV

    Get PDF
    Monitoring the efficacy of novel reservoir-reducing treatments for HIV is challenging. The limited ability to sample and quantify latent infection means that supervised antiretroviral therapy (ART) interruption studies are generally required. Here we introduce a set of mathematical and statistical modeling tools to aid in the design and interpretation of ART-interruption trials. We show how the likely size of the remaining reservoir can be updated in real-time as patients continue off treatment, by combining the output of laboratory assays with insights from models of reservoir dynamics and rebound. We design an optimal schedule for viral load sampling during interruption, whereby the frequency of follow-up can be decreased as patients continue off ART without rebound. While this scheme can minimize costs when the chance of rebound between visits is low, we find that the reservoir will be almost completely reseeded before rebound is detected unless sampling occurs at least every two weeks and the most sensitive viral load assays are used. We use simulated data to predict the clinical trial size needed to estimate treatment effects in the face of highly variable patient outcomes and imperfect reservoir assays. Our findings suggest that large numbers of patients—between 40 and 150—will be necessary to reliably estimate the reservoir-reducing potential of a new therapy and to compare this across interventions. As an example, we apply these methods to the two “Boston patients”, recipients of allogeneic hematopoietic stem cell transplants who experienced large reductions in latent infection and underwent ART-interruption. We argue that the timing of viral rebound was not particularly surprising given the information available before treatment cessation. Additionally, we show how other clinical data can be used to estimate the relative contribution that remaining HIV+ cells in the recipient versus newly infected cells from the donor made to the residual reservoir that eventually caused rebound. Together, these tools will aid HIV researchers in the evaluating new potentially-curative strategies that target the latent reservoir

    Culture shapes how we look at faces

    Get PDF
    Background: Face processing, amongst many basic visual skills, is thought to be invariant across all humans. From as early as 1965, studies of eye movements have consistently revealed a systematic triangular sequence of fixations over the eyes and the mouth, suggesting that faces elicit a universal, biologically-determined information extraction pattern. Methodology/Principal Findings: Here we monitored the eye movements of Western Caucasian and East Asian observers while they learned, recognized, and categorized by race Western Caucasian and East Asian faces. Western Caucasian observers reproduced a scattered triangular pattern of fixations for faces of both races and across tasks. Contrary to intuition, East Asian observers focused more on the central region of the face. Conclusions/Significance: These results demonstrate that face processing can no longer be considered as arising from a universal series of perceptual events. The strategy employed to extract visual information from faces differs across cultures

    Surgical technique for lung retransplantation in the mouse

    Get PDF
    Microsurgical cuff techniques for orthotopic vascularized murine lung transplantation have allowed for the design of studies that examine mechanisms contributing to the high failure rate of pulmonary grafts. Here, we provide a detailed technical description of orthotopic lung retransplantation in mice, which we have thus far performed in 144 animals. The total time of the retransplantation procedure is approximately 55 minutes, 20 minutes for donor harvest and 35 minutes for the implantation, with a success rate exceeding 95%. The mouse lung retransplantation model represents a novel and powerful tool to examine how cells that reside in or infiltrate pulmonary grafts shape immune responses

    Quantitative Chemically-Specific Coherent Diffractive Imaging of Buried Interfaces using a Tabletop EUV Nanoscope

    Full text link
    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried interfaces, compared with all other approaches.Comment: 12 pages, 8 figure
    corecore