6 research outputs found

    Scintillating Bubble Chambers for Rare Event Searches

    No full text
    The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson

    Myocardial Injury on CMR in Patients With COVID-19 and Suspected Cardiac Involvement

    No full text
    BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction–confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present

    Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response

    Get PDF
    Synthetic scaffolds are crucial to applications in regenerative medicine; however, the foreign body response can impede regeneration and may lead to failure of the implant. Herein we report the development of a tissue engineering scaffold that allows attachment and proliferation of regenerating cells while reducing the foreign body response by localized delivery of an anti-inflammatory agent. Electrospun fibers composed of poly(l-lactic) acid (PLLA) and poly(Δ-caprolactone) (PCL) were prepared with and without the steroid anti-inflammatory drug, dexamethasone. Analysis of subcutaneous implants demonstrated that the PLLA fibers encapsulating dexamethasone evoked a less severe inflammatory response than the other fibers examined. They also displayed a controlled release of dexamethasone over a period of time conducive to tissue regeneration and allowed human mesenchymal stem cells to adhere to and proliferate on them in vitro. These observations demonstrate their potential as a building block for tissue engineering scaffolds.Armed Forces Institute of Regenerative Medicine (award number W81XWH-08-2-0034)U.S. Army Medical Research Acquisition Activit

    Chest pain due to coronary artery disease alters stress neuropeptide levels: Potential implications for clinical assessment

    No full text
    corecore