87 research outputs found

    The Anti-Sigma Factor MucA of Pseudomonas aeruginosa: Dramatic Differences of a mucA22 vs. a ΔmucA Mutant in Anaerobic Acidified Nitrite Sensitivity of Planktonic and Biofilm Bacteria in vitro and During Chronic Murine Lung Infection

    Get PDF
    Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases

    Serum Protein Signatures Using Aptamer-Based Proteomics for Minimal Change Disease and Membranous Nephropathy

    Get PDF
    Introduction: Minimal change disease (MCD) and membranous nephropathy (MN) are glomerular diseases (glomerulonephritis [GN]) that present with the nephrotic syndrome. Although circulating PLA2R antibodies have been validated as a biomarker for MN, the diagnosis of MCD and PLA2R-negative MN still relies on the results of kidney biopsy or empirical corticosteroids in children. We aimed to identify serum protein biomarker signatures associated with MCD and MN pathogenesis using aptamer-based proteomics. Methods: Quantitative SOMAscan proteomics was applied to the serum of adult patients with MCD (n = 15) and MN(n = 37) and healthy controls (n = 20). Associations between the 1305proteins detected with SOMAscan were assessed using multiple statistical tests, expression pattern analysis, and systems biology analysis. Results: A total of 208 and 244 proteins were identified that differentiated MCD and MN, respectively, with high statistical significance from the healthy controls (Benjamin-Hochberg [BH] P \u3c 0.0001). There were 157 proteins that discriminated MN from MCD (BH P \u3c 0.05). In MCD, 65 proteins were differentially expressed as compared with MN and healthy controls. When compared with MCD and healthy controls, 44 discriminatory proteins were specifically linked to MN. Systems biology analysis of these signatures identified cell death and inflammation as key pathways differentiating MN from MCD and healthy controls. Dysregulation of fatty acid metabolism pathways was confirmed in both MN and MCD as compared with the healthy subjects. Conclusion: SOMAscan represents a promising proteomic platform for biomarker development in GN. Validation of a greater number of discovery biomarkers in larger patient cohorts is needed before these data can be translated for clinical care

    Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion

    Get PDF
    Nephrocalcinosis, acute calcium oxalate (CaOx) nephropathy, and renal stone disease can lead to inflammation and subsequent renal failure, but the underlying pathological mechanisms remain elusive. Other crystallopathies, such as gout, atherosclerosis, and asbestosis, trigger inflammation and tissue remodeling by inducing IL-1β secretion, leading us to hypothesize that CaOx crystals may induce inflammation in a similar manner. In mice, intrarenal CaOx deposition induced tubular damage, cytokine expression, neutrophil recruitment, and renal failure. We found that CaOx crystals activated murine renal DCs to secrete IL-1β through a pathway that included NLRP3, ASC, and caspase-1. Despite a similar amount of crystal deposits, intrarenal inflammation, tubular damage, and renal dysfunction were abrogated in mice deficient in MyD88; NLRP3, ASC, and caspase-1; IL-1R; or IL-18. Nephropathy was attenuated by DC depletion, ATP depletion, or therapeutic IL-1 antagonism. These data demonstrated that CaOx crystals trigger IL-1β–dependent innate immunity via the NLRP3/ASC/caspase-1 axis in intrarenal mononuclear phagocytes and directly damage tubular cells, leading to the release of the NLRP3 agonist ATP. Furthermore, these results suggest that IL-1β blockade may prevent renal damage in nephrocalcinosis

    Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion

    Full text link
    Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications

    The p53 Tumor Suppressor Is Stabilized by Inhibitor of Growth 1 (ING1) by Blocking Polyubiquitination

    Get PDF
    The INhibitor of Growth tumor suppressors (ING1-ING5) affect aging, apoptosis, DNA repair and tumorigenesis. Plant homeodomains (PHD) of ING proteins bind histones in a methylation-sensitive manner to regulate chromatin structure. ING1 and ING2 contain a polybasic region (PBR) adjacent to their PHDs that binds stress-inducible phosphatidylinositol monophosphate (PtIn-MP) signaling lipids to activate these INGs. ING1 induces apoptosis independently of p53 but other studies suggest proapoptotic interdependence of ING1 and p53 leaving their functional relationship unclear. Here we identify a novel ubiquitin-binding domain (UBD) that overlaps with the PBR of ING1 and shows similarity to previously described UBDs involved in DNA damage responses. The ING1 UBD binds ubiquitin with high affinity (Kd∼100 nM) and ubiquitin competes with PtIn-MPs for ING1 binding. ING1 expression stabilized wild-type, but not mutant p53 in an MDM2-independent manner and knockdown of endogenous ING1 depressed p53 levels in a transcription-independent manner. ING1 stabilized unmodified and six multimonoubiquitinated forms of wild-type p53 that were also seen upon DNA damage, but not p53 mutants lacking the six known sites of ubiquitination. We also find that ING1 physically interacts with herpesvirus-associated ubiquitin-specific protease (HAUSP), a p53 and MDM2 deubiquitinase (DUB), and knockdown of HAUSP blocks the ability of ING1 to stabilize p53. These data link lipid stress signaling to ubiquitin-mediated proteasomal degradation through the PBR/UBD of ING1 and further indicate that ING1 stabilizes p53 by inhibiting polyubiquitination of multimonoubiquitinated forms via interaction with and colocalization of the HAUSP-deubiquitinase with p53

    Neutrophils Interact with Adenovirus Vectors via Fc Receptors and Complement Receptor 1

    No full text
    Neutrophils are effectors of the innate immune response to adenovirus vectors. Following the systemic administration of Cy2-labeled AdLuc in mice, flow cytometry and PCR analysis of liver leukocytes revealed that 25% of recruited neutrophils interacted with adenovirus vectors. In vitro, flow cytometry of human neutrophils incubated with Cy2-labeled AdLuc also demonstrated a significant interaction with adenovirus vectors. Fluorescence and electron microscopy confirmed vector internalization by neutrophils. The AdLuc-neutrophil interaction reduced vector transduction efficiency by more than 50% in coincubation assays in epithelium-derived cells. Adenovirus vector uptake by neutrophils occurred independently of coxsackievirus adenovirus receptor (CAR) and capsid RGD motifs, since neutrophils do not express CAR and uptake of the RGD-deleted vector AdL.PB* was similar to that of AdLuc. Furthermore, both AdLuc and AdL.PB* activated neutrophils and induced similar degrees of L-selectin shedding. Neutrophil uptake of AdLuc was dependent on the presence of complement and antibodies, since the interaction between AdLuc and neutrophils was significantly reduced when they were incubated in immunoglobulin G-depleted or heat-inactivated human serum. Blocking of complement receptor 1 (CD35) but not complement receptor 3 (CD11b/CD18) significantly reduced neutrophil uptake of AdLuc. Blocking of FcγRI (CD64), FcγRII (CD32), and FcγRIII (CD16) individually or together also reduced neutrophil uptake of AdLuc, although less than blocking of CD35 alone. Combined CR1 and Fc receptor blockade synergistically inhibited neutrophil-AdLuc interactions close to baseline. These results demonstrate opsonin-dependent adenovirus vector interactions with neutrophils and their corresponding receptors

    Sociodemographic associations with abnormal estimated glomerular filtration rate (eGFR) in a large Canadian city: a cross-sectional observation study

    No full text
    Abstract Background Chronic kidney disease (CKD) is often asymptomatic in its early stages but is indicated and is diagnosed with an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73m2. Certain sociodemographic groups are known to be at risk for CKD, but it is unclear if there are strong associations between these at risk groups with abnormal eGFR test results in Canada. Using only secondary laboratory and Census data, geospatial variation and sociodemographic associations with abnormal eGFR result rate were investigated in Calgary, Alberta. Methods Secondary laboratory data from all adult community patients who received an eGFR test result were collected from Calgary Laboratory Service’s Laboratory Information System, which is the sole supplier of laboratory services for the large metropolitan city. Group-level sociodemographic variables were inferred by combining laboratory data with the 2011 Canadian Census data. Poisson regression and relative risk (RR) were used to calculate associations between sociodemographic variables with abnormal eGFR. Geographical distribution of abnormal eGFR result rates were analyzed by geospatial analysis using ArcGIS. Results Of the 346,663 adult community patients who received an eGFR test result, 28,091 were abnormal (8.1%; eGFR < 60 ml/min/1.73m2). Geospatial analysis revealed distinct geographical variation in abnormal eGFR result rates in Calgary. Women (RR = 1.11, P < 0.0001), and the elderly (age ≥ 70 years; P < 0.0001) were significantly associated with an increased risk for CKD, while visible minority Chinese (RR = 0.73, P = 0.0011), South Asians (RR = 0.67, P < 0.0001) and those with a high median household income (RR = 0.88, P < 0.0001) had a significantly reduced risk for CKD. Conclusions Presented here are significant sociodemographic risk associations, and geospatial clustering of abnormal eGFR result rates in a large metropolitan Canadian city. Using solely publically available secondary laboratory and Census data, the results from this study aligns with known sociodemographic risk factors for CKD, as certain sociodemographic variables were at a higher risk for having an abnormal eGFR test result, while others were protective in this analysis
    • …
    corecore